[Emerging Infectious Diseases] [Volume 4 No. 2 / April - June 1998] Dispatches Mycobacterium tuberculosis infection as a Zoonotic Disease: Transmission between Humans and Elephants Kathleen Michalak,* Connie Austin,† Sandy Diesel,* J. Maichle Bacon,* Phil Zimmerman,‡ and Joel N. Maslow§ *McHenry County Department of Health, Woodstock, Illinois, USA; †Illinois Department of Public Health, Springfield, Illinois, USA; ‡University of Illinois, College of Medicine at Rockford, Rockford, Illinois, USA; and §Boston University School of Medicine and the VA Medical Center, Boston, Massachusetts, USA -------------------------------------------------- Between 1994 and 1996, three elephants from an exotic animal farm in Illinois died of pulmonary disease due to Mycobacterium tuberculosis. In October 1996, a fourth living elephant was culture-positive for M. tuberculosis. Twenty-two handlers at the farm were screened for tuberculosis (TB); eleven had positive reactions to intradermal injection with purified protein derivative. One had smear-negative, culture-positive active TB. DNA fingerprint comparison by IS6110 and TBN12 typing showed that the isolates from the four elephants and the handler with active TB were the same strain. This investigation indicates transmission of M. tuberculosis between humans and elephants. Mycobacterium tuberculosis and M. bovis, related organisms of the M. tuberculosis complex, infect a wide variety of mammalian species. M. bovis is pathogenic for many animal species, especially bovidae, cervidae, and occasionally carnivores. Human disease with M. bovis is well described and historically was a common cause of tuberculosis (TB) transmitted by infected dairy products. As a result of milk pasteurization and TB eradication programs in most industrialized countries, zoonotic transmission of M. bovis through domestic livestock is now rare. In contrast, a similar eradication program has not been conducted for wild or exotic animals, which therefore remain an uncommon source for M. bovis exposure. Zoonotic transmission of M. bovis has been reported from seals, rhinoceros, and elk (1-4). M. tuberculosis, the most common species to cause TB, classically causes disease in humans. Animal infection with M. tuberculosis, while uncommon, has been described among species (e.g., birds, elephants, and other mammals) with prolonged and close contact with humans (5-10). Transmission of M. tuberculosis between animals and humans has not been reported. This paper describes M. tuberculosis transmission from elephants to humans. The Outbreak In March 1996, five elephants from an exotic animal farm in Illinois were in California as part of a circus act. One elephant (with chronic, unexplained weight loss since October 1995) died under anesthesia on August 3, 1996, during a diagnostic dental work-up. Necropsy showed widespread consolidation of lung tissue with caseous necrosis of the lungs and mediastinal lymph nodes. Short, fat, relatively scant numbers of acid-fast bacilli were observed in necropsy tissues. A presumptive diagnosis of M. tuberculosis was made. The remaining four elephants were recalled to the farm in Illinois. A second elephant died en route on August 6, 1996. Necropsy revealed copious respiratory and trunk exudates and caseous necrosis of the lung. To determine the risk for and possibility of infection among the animal trainers and caretakers, an epidemiologic investigation was initiated. The remaining elephants in the herd and the elephant handlers and trainers who were still traveling were recalled to the farm and examined for evidence of M. tuberculosis infection. All elephants were empirically begun on antituberculous therapy in early December 1996. Epidemiologic Investigation The exotic animal farm was visited on numerous occasions to evaluate the type and degree of contact between elephants and employees. The farm, located in a rural area and surrounded by barbed wire and trees, originally housed 18 Asian and 2 African elephants. Thirteen elephants were tethered on a chain in one large barn, four were housed in a separate large room (two in a common stall), and a baby elephant was in a third room with 5-6 tigers. A separate barn housed approximately 80 tigers. TB Screening of Employees The animal handlers (trainers and caretakers) who had direct contact with the elephants were administered purified protein derivative (PPD) skin tests. Initial screening was performed in August 1996, with subsequent screenings in December 1996 and March, June, and September of 1997. Testing was performed by the McHenry County Department of Health, except in two handlers who had subsequent skin tests performed elsewhere. As part of the screening process, handlers were questioned about their risk factors for TB, including previous bacillus Calmette-Guérin (BCG) vaccination. Handlers were tested by the two-step method using 5 tuberculin units of PPD (0.1 ml) by intradermal injection in the flexor surface of the forearm. A positive result was defined as an induration of >5 mm. Handlers with positive skin tests were evaluated by a TB health-care worker and had chest radiographs taken. Sputum samples from any handler with a chest radiograph consistent with TB were submitted to the Illinois Department of Public Health Laboratory. Samples were examined by direct microscopy for acid-fast organisms, stained with fluorochrome, and processed for culture by standard methods. Examination of Isolates The human isolate and the four elephant isolates were sent to the National Tuberculosis Genotyping and Surveillance Network at the Michigan Community Public Health Agency for restriction fragment length polymorphism (RFLP) analysis. Southern blots of Pvu II restricted whole chromosomal DNA, resolved in 1% agarose gels, were probed with a DNA fragment corresponding to the right side of IS6110 and detected by chemiluminescence (11). The number and size of the hybridizing fragments for each isolate were compared in the same gel. Isolates with identical RFLP patterns or with