00001
00002
00003 #include "pch.h"
00004 #include "cryptlib.h"
00005 #include "misc.h"
00006 #include "filters.h"
00007 #include "algparam.h"
00008 #include "fips140.h"
00009 #include "argnames.h"
00010
00011 #include <memory>
00012
00013 NAMESPACE_BEGIN(CryptoPP)
00014
00015 CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
00016 CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
00017 CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
00018 #ifdef WORD64_AVAILABLE
00019 CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
00020 #endif
00021 CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
00022
00023 const std::string BufferedTransformation::NULL_CHANNEL;
00024 const NullNameValuePairs g_nullNameValuePairs;
00025
00026 BufferedTransformation & TheBitBucket()
00027 {
00028 static BitBucket bitBucket;
00029 return bitBucket;
00030 }
00031
00032 Algorithm::Algorithm(bool checkSelfTestStatus)
00033 {
00034 if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
00035 {
00036 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
00037 throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");
00038
00039 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
00040 throw SelfTestFailure("Cryptographic algorithms are disabled after power-up a self test failed.");
00041 }
00042 }
00043
00044 void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, unsigned int length, int rounds)
00045 {
00046 SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
00047 }
00048
00049 void SimpleKeyingInterface::SetKeyWithIV(const byte *key, unsigned int length, const byte *iv)
00050 {
00051 SetKey(key, length, MakeParameters(Name::IV(), iv));
00052 }
00053
00054 void SimpleKeyingInterface::ThrowIfInvalidKeyLength(const Algorithm &algorithm, unsigned int length)
00055 {
00056 if (!IsValidKeyLength(length))
00057 throw InvalidKeyLength(algorithm.AlgorithmName(), length);
00058 }
00059
00060 void BlockTransformation::ProcessAndXorMultipleBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, unsigned int numberOfBlocks) const
00061 {
00062 unsigned int blockSize = BlockSize();
00063 while (numberOfBlocks--)
00064 {
00065 ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
00066 inBlocks += blockSize;
00067 outBlocks += blockSize;
00068 if (xorBlocks)
00069 xorBlocks += blockSize;
00070 }
00071 }
00072
00073 void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, unsigned int length)
00074 {
00075 assert(MinLastBlockSize() == 0);
00076
00077 if (length == MandatoryBlockSize())
00078 ProcessData(outString, inString, length);
00079 else if (length != 0)
00080 throw NotImplemented("StreamTransformation: this object does't support a special last block");
00081 }
00082
00083 unsigned int RandomNumberGenerator::GenerateBit()
00084 {
00085 return Parity(GenerateByte());
00086 }
00087
00088 void RandomNumberGenerator::GenerateBlock(byte *output, unsigned int size)
00089 {
00090 while (size--)
00091 *output++ = GenerateByte();
00092 }
00093
00094 word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
00095 {
00096 word32 range = max-min;
00097 const int maxBytes = BytePrecision(range);
00098 const int maxBits = BitPrecision(range);
00099
00100 word32 value;
00101
00102 do
00103 {
00104 value = 0;
00105 for (int i=0; i<maxBytes; i++)
00106 value = (value << 8) | GenerateByte();
00107
00108 value = Crop(value, maxBits);
00109 } while (value > range);
00110
00111 return value+min;
00112 }
00113
00114 void RandomNumberGenerator::DiscardBytes(unsigned int n)
00115 {
00116 while (n--)
00117 GenerateByte();
00118 }
00119
00120 RandomNumberGenerator & NullRNG()
00121 {
00122 class NullRNG : public RandomNumberGenerator
00123 {
00124 public:
00125 std::string AlgorithmName() const {return "NullRNG";}
00126 byte GenerateByte() {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
00127 };
00128
00129 static NullRNG s_nullRNG;
00130 return s_nullRNG;
00131 }
00132
00133 bool HashTransformation::TruncatedVerify(const byte *digestIn, unsigned int digestLength)
00134 {
00135 ThrowIfInvalidTruncatedSize(digestLength);
00136 SecByteBlock digest(digestLength);
00137 TruncatedFinal(digest, digestLength);
00138 return memcmp(digest, digestIn, digestLength) == 0;
00139 }
00140
00141 void HashTransformation::ThrowIfInvalidTruncatedSize(unsigned int size) const
00142 {
00143 if (size > DigestSize())
00144 throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
00145 }
00146
00147 unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
00148 {
00149 const BufferedTransformation *t = AttachedTransformation();
00150 return t ? t->GetMaxWaitObjectCount() : 0;
00151 }
00152
00153 void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container)
00154 {
00155 BufferedTransformation *t = AttachedTransformation();
00156 if (t)
00157 t->GetWaitObjects(container);
00158 }
00159
00160 void BufferedTransformation::Initialize(const NameValuePairs ¶meters, int propagation)
00161 {
00162 assert(!AttachedTransformation());
00163 IsolatedInitialize(parameters);
00164 }
00165
00166 bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
00167 {
00168 assert(!AttachedTransformation());
00169 return IsolatedFlush(hardFlush, blocking);
00170 }
00171
00172 bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
00173 {
00174 assert(!AttachedTransformation());
00175 return IsolatedMessageSeriesEnd(blocking);
00176 }
00177
00178 byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, unsigned int &size)
00179 {
00180 if (channel.empty())
00181 return CreatePutSpace(size);
00182 else
00183 throw NoChannelSupport();
00184 }
00185
00186 unsigned int BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, unsigned int length, int messageEnd, bool blocking)
00187 {
00188 if (channel.empty())
00189 return Put2(begin, length, messageEnd, blocking);
00190 else
00191 throw NoChannelSupport();
00192 }
00193
00194 unsigned int BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, unsigned int length, int messageEnd, bool blocking)
00195 {
00196 if (channel.empty())
00197 return PutModifiable2(begin, length, messageEnd, blocking);
00198 else
00199 return ChannelPut2(channel, begin, length, messageEnd, blocking);
00200 }
00201
00202 void BufferedTransformation::ChannelInitialize(const std::string &channel, const NameValuePairs ¶meters, int propagation)
00203 {
00204 if (channel.empty())
00205 Initialize(parameters, propagation);
00206 else
00207 throw NoChannelSupport();
00208 }
00209
00210 bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
00211 {
00212 if (channel.empty())
00213 return Flush(completeFlush, propagation, blocking);
00214 else
00215 throw NoChannelSupport();
00216 }
00217
00218 bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
00219 {
00220 if (channel.empty())
00221 return MessageSeriesEnd(propagation, blocking);
00222 else
00223 throw NoChannelSupport();
00224 }
00225
00226 unsigned long BufferedTransformation::MaxRetrievable() const
00227 {
00228 if (AttachedTransformation())
00229 return AttachedTransformation()->MaxRetrievable();
00230 else
00231 return CopyTo(TheBitBucket());
00232 }
00233
00234 bool BufferedTransformation::AnyRetrievable() const
00235 {
00236 if (AttachedTransformation())
00237 return AttachedTransformation()->AnyRetrievable();
00238 else
00239 {
00240 byte b;
00241 return Peek(b) != 0;
00242 }
00243 }
00244
00245 unsigned int BufferedTransformation::Get(byte &outByte)
00246 {
00247 if (AttachedTransformation())
00248 return AttachedTransformation()->Get(outByte);
00249 else
00250 return Get(&outByte, 1);
00251 }
00252
00253 unsigned int BufferedTransformation::Get(byte *outString, unsigned int getMax)
00254 {
00255 if (AttachedTransformation())
00256 return AttachedTransformation()->Get(outString, getMax);
00257 else
00258 {
00259 ArraySink arraySink(outString, getMax);
00260 return TransferTo(arraySink, getMax);
00261 }
00262 }
00263
00264 unsigned int BufferedTransformation::Peek(byte &outByte) const
00265 {
00266 if (AttachedTransformation())
00267 return AttachedTransformation()->Peek(outByte);
00268 else
00269 return Peek(&outByte, 1);
00270 }
00271
00272 unsigned int BufferedTransformation::Peek(byte *outString, unsigned int peekMax) const
00273 {
00274 if (AttachedTransformation())
00275 return AttachedTransformation()->Peek(outString, peekMax);
00276 else
00277 {
00278 ArraySink arraySink(outString, peekMax);
00279 return CopyTo(arraySink, peekMax);
00280 }
00281 }
00282
00283 unsigned long BufferedTransformation::Skip(unsigned long skipMax)
00284 {
00285 if (AttachedTransformation())
00286 return AttachedTransformation()->Skip(skipMax);
00287 else
00288 return TransferTo(TheBitBucket(), skipMax);
00289 }
00290
00291 unsigned long BufferedTransformation::TotalBytesRetrievable() const
00292 {
00293 if (AttachedTransformation())
00294 return AttachedTransformation()->TotalBytesRetrievable();
00295 else
00296 return MaxRetrievable();
00297 }
00298
00299 unsigned int BufferedTransformation::NumberOfMessages() const
00300 {
00301 if (AttachedTransformation())
00302 return AttachedTransformation()->NumberOfMessages();
00303 else
00304 return CopyMessagesTo(TheBitBucket());
00305 }
00306
00307 bool BufferedTransformation::AnyMessages() const
00308 {
00309 if (AttachedTransformation())
00310 return AttachedTransformation()->AnyMessages();
00311 else
00312 return NumberOfMessages() != 0;
00313 }
00314
00315 bool BufferedTransformation::GetNextMessage()
00316 {
00317 if (AttachedTransformation())
00318 return AttachedTransformation()->GetNextMessage();
00319 else
00320 {
00321 assert(!AnyMessages());
00322 return false;
00323 }
00324 }
00325
00326 unsigned int BufferedTransformation::SkipMessages(unsigned int count)
00327 {
00328 if (AttachedTransformation())
00329 return AttachedTransformation()->SkipMessages(count);
00330 else
00331 return TransferMessagesTo(TheBitBucket(), count);
00332 }
00333
00334 unsigned int BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
00335 {
00336 if (AttachedTransformation())
00337 return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
00338 else
00339 {
00340 unsigned int maxMessages = messageCount;
00341 for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
00342 {
00343 unsigned int blockedBytes;
00344 unsigned long transferedBytes;
00345
00346 while (AnyRetrievable())
00347 {
00348 transferedBytes = ULONG_MAX;
00349 blockedBytes = TransferTo2(target, transferedBytes, channel, blocking);
00350 if (blockedBytes > 0)
00351 return blockedBytes;
00352 }
00353
00354 if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
00355 return 1;
00356
00357 bool result = GetNextMessage();
00358 assert(result);
00359 }
00360 return 0;
00361 }
00362 }
00363
00364 unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
00365 {
00366 if (AttachedTransformation())
00367 return AttachedTransformation()->CopyMessagesTo(target, count, channel);
00368 else
00369 return 0;
00370 }
00371
00372 void BufferedTransformation::SkipAll()
00373 {
00374 if (AttachedTransformation())
00375 AttachedTransformation()->SkipAll();
00376 else
00377 {
00378 while (SkipMessages()) {}
00379 while (Skip()) {}
00380 }
00381 }
00382
00383 unsigned int BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
00384 {
00385 if (AttachedTransformation())
00386 return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
00387 else
00388 {
00389 assert(!NumberOfMessageSeries());
00390
00391 unsigned int messageCount;
00392 do
00393 {
00394 messageCount = UINT_MAX;
00395 unsigned int blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
00396 if (blockedBytes)
00397 return blockedBytes;
00398 }
00399 while (messageCount != 0);
00400
00401 unsigned long byteCount;
00402 do
00403 {
00404 byteCount = ULONG_MAX;
00405 unsigned int blockedBytes = TransferTo2(target, byteCount, channel, blocking);
00406 if (blockedBytes)
00407 return blockedBytes;
00408 }
00409 while (byteCount != 0);
00410
00411 return 0;
00412 }
00413 }
00414
00415 void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
00416 {
00417 if (AttachedTransformation())
00418 AttachedTransformation()->CopyAllTo(target, channel);
00419 else
00420 {
00421 assert(!NumberOfMessageSeries());
00422 while (CopyMessagesTo(target, UINT_MAX, channel)) {}
00423 }
00424 }
00425
00426 void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
00427 {
00428 if (AttachedTransformation())
00429 AttachedTransformation()->SetRetrievalChannel(channel);
00430 }
00431
00432 unsigned int BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
00433 {
00434 FixedSizeSecBlock<byte, 2> buf;
00435 PutWord(false, order, buf, value);
00436 return ChannelPut(channel, buf, 2, blocking);
00437 }
00438
00439 unsigned int BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
00440 {
00441 FixedSizeSecBlock<byte, 4> buf;
00442 PutWord(false, order, buf, value);
00443 return ChannelPut(channel, buf, 4, blocking);
00444 }
00445
00446 unsigned int BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
00447 {
00448 return ChannelPutWord16(NULL_CHANNEL, value, order, blocking);
00449 }
00450
00451 unsigned int BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
00452 {
00453 return ChannelPutWord32(NULL_CHANNEL, value, order, blocking);
00454 }
00455
00456 unsigned int BufferedTransformation::PeekWord16(word16 &value, ByteOrder order)
00457 {
00458 byte buf[2] = {0, 0};
00459 unsigned int len = Peek(buf, 2);
00460
00461 if (order)
00462 value = (buf[0] << 8) | buf[1];
00463 else
00464 value = (buf[1] << 8) | buf[0];
00465
00466 return len;
00467 }
00468
00469 unsigned int BufferedTransformation::PeekWord32(word32 &value, ByteOrder order)
00470 {
00471 byte buf[4] = {0, 0, 0, 0};
00472 unsigned int len = Peek(buf, 4);
00473
00474 if (order)
00475 value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
00476 else
00477 value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];
00478
00479 return len;
00480 }
00481
00482 unsigned int BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
00483 {
00484 return Skip(PeekWord16(value, order));
00485 }
00486
00487 unsigned int BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
00488 {
00489 return Skip(PeekWord32(value, order));
00490 }
00491
00492 void BufferedTransformation::Attach(BufferedTransformation *newOut)
00493 {
00494 if (AttachedTransformation() && AttachedTransformation()->Attachable())
00495 AttachedTransformation()->Attach(newOut);
00496 else
00497 Detach(newOut);
00498 }
00499
00500 void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
00501 {
00502 GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
00503 }
00504
00505 BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment) const
00506 {
00507 struct EncryptionFilter : public Unflushable<FilterWithInputQueue>
00508 {
00509
00510 EncryptionFilter(const EncryptionFilter &x) : Unflushable<FilterWithInputQueue>(NULL), m_rng(x.m_rng), m_encryptor(x.m_encryptor) {}
00511
00512 EncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment)
00513 : Unflushable<FilterWithInputQueue>(attachment), m_rng(rng), m_encryptor(encryptor)
00514 {
00515 }
00516
00517 bool IsolatedMessageEnd(bool blocking)
00518 {
00519 switch (m_continueAt)
00520 {
00521 case 0:
00522 {
00523 unsigned int plaintextLength = m_inQueue.CurrentSize();
00524 m_ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
00525
00526 SecByteBlock plaintext(plaintextLength);
00527 m_inQueue.Get(plaintext, plaintextLength);
00528 m_ciphertext.resize(m_ciphertextLength);
00529 m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext);
00530 }
00531
00532 case 1:
00533 if (!Output(1, m_ciphertext, m_ciphertextLength, 0, blocking))
00534 return false;
00535 };
00536 return true;
00537 }
00538
00539 RandomNumberGenerator &m_rng;
00540 const PK_Encryptor &m_encryptor;
00541 unsigned int m_ciphertextLength;
00542 SecByteBlock m_ciphertext;
00543 };
00544
00545 return new EncryptionFilter(rng, *this, attachment);
00546 }
00547
00548 BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment) const
00549 {
00550 struct DecryptionFilter : public Unflushable<FilterWithInputQueue>
00551 {
00552
00553 DecryptionFilter(const DecryptionFilter &x) : Unflushable<FilterWithInputQueue>(NULL), m_rng(x.m_rng), m_decryptor(x.m_decryptor) {}
00554
00555 DecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment)
00556 : Unflushable<FilterWithInputQueue>(attachment), m_rng(rng), m_decryptor(decryptor)
00557 {
00558 }
00559
00560 bool IsolatedMessageEnd(bool blocking)
00561 {
00562 switch (m_continueAt)
00563 {
00564 case 0:
00565 {
00566 unsigned int ciphertextLength = m_inQueue.CurrentSize();
00567 unsigned int maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
00568
00569 SecByteBlock ciphertext(ciphertextLength);
00570 m_inQueue.Get(ciphertext, ciphertextLength);
00571 m_plaintext.resize(maxPlaintextLength);
00572 m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext);
00573 if (!m_result.isValidCoding)
00574 throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
00575 }
00576
00577 case 1:
00578 if (!Output(1, m_plaintext, m_result.messageLength, 0, blocking))
00579 return false;
00580 }
00581 return true;
00582 }
00583
00584 RandomNumberGenerator &m_rng;
00585 const PK_Decryptor &m_decryptor;
00586 SecByteBlock m_plaintext;
00587 DecodingResult m_result;
00588 };
00589
00590 return new DecryptionFilter(rng, *this, attachment);
00591 }
00592
00593 unsigned int PK_FixedLengthCryptoSystem::MaxPlaintextLength(unsigned int cipherTextLength) const
00594 {
00595 if (cipherTextLength == FixedCiphertextLength())
00596 return FixedMaxPlaintextLength();
00597 else
00598 return 0;
00599 }
00600
00601 unsigned int PK_FixedLengthCryptoSystem::CiphertextLength(unsigned int plainTextLength) const
00602 {
00603 if (plainTextLength <= FixedMaxPlaintextLength())
00604 return FixedCiphertextLength();
00605 else
00606 return 0;
00607 }
00608
00609 DecodingResult PK_FixedLengthDecryptor::Decrypt(RandomNumberGenerator &rng, const byte *cipherText, unsigned int cipherTextLength, byte *plainText) const
00610 {
00611 if (cipherTextLength != FixedCiphertextLength())
00612 return DecodingResult();
00613
00614 return FixedLengthDecrypt(rng, cipherText, plainText);
00615 }
00616
00617 unsigned int PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
00618 {
00619 std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00620 return SignAndRestart(rng, *m, signature, false);
00621 }
00622
00623 unsigned int PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, unsigned int messageLen, byte *signature) const
00624 {
00625 std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00626 m->Update(message, messageLen);
00627 return SignAndRestart(rng, *m, signature, false);
00628 }
00629
00630 unsigned int PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, unsigned int recoverableMessageLength,
00631 const byte *nonrecoverableMessage, unsigned int nonrecoverableMessageLength, byte *signature) const
00632 {
00633 std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00634 InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
00635 m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00636 return SignAndRestart(rng, *m, signature, false);
00637 }
00638
00639 bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
00640 {
00641 std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00642 return VerifyAndRestart(*m);
00643 }
00644
00645 bool PK_Verifier::VerifyMessage(const byte *message, unsigned int messageLen, const byte *signature, unsigned int signatureLength) const
00646 {
00647 std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00648 InputSignature(*m, signature, signatureLength);
00649 m->Update(message, messageLen);
00650 return VerifyAndRestart(*m);
00651 }
00652
00653 DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
00654 {
00655 std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00656 return RecoverAndRestart(recoveredMessage, *m);
00657 }
00658
00659 DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage,
00660 const byte *nonrecoverableMessage, unsigned int nonrecoverableMessageLength,
00661 const byte *signature, unsigned int signatureLength) const
00662 {
00663 std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00664 InputSignature(*m, signature, signatureLength);
00665 m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00666 return RecoverAndRestart(recoveredMessage, *m);
00667 }
00668
00669 void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00670 {
00671 GeneratePrivateKey(rng, privateKey);
00672 GeneratePublicKey(rng, privateKey, publicKey);
00673 }
00674
00675 void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00676 {
00677 GenerateStaticPrivateKey(rng, privateKey);
00678 GenerateStaticPublicKey(rng, privateKey, publicKey);
00679 }
00680
00681 void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00682 {
00683 GenerateEphemeralPrivateKey(rng, privateKey);
00684 GenerateEphemeralPublicKey(rng, privateKey, publicKey);
00685 }
00686
00687 NAMESPACE_END