Writing mod_perl Handlers and Scripts 1 Writing mod_perl Handlers and Scripts

1 Writing mod_perl Handlers and Scripts

6 Dec 2003 1

1.1 Description

1.1 Description|

This chapter covers the mod_perl coding specifics, different from normal Perl coding. Most other perl
coding issues are covered in the perl manpages and rich literature.

1.2 |Prerequisites

1.3 Wherethe Methods Live

mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the modules
containing them have to be loaded first. If you don’t do that mod_perl will complain that it can't find the
methods in question. The module ModPer | : : Met hodLookup can be used to find out which modules
need to be used.

1.4 [Goodies Toolkit

1.4.1 [EnvironmentVariable$

mod_perl sets the following environment variables:

o SENV{ MOD_PERL} - issettothemod_perl version the server isrunning under. e.g.:

mod_perl/1.99_03-dev

If $ENV{ MOD_PERL} doesn’t exist, most likely you are not running under mod_perl.

die "l refuse to work wi thout nod_perl!" unless exists $ENV{MOD PERL};

However to check which version is used it’ s better to use the following technique:

use nod_perl ;
use constant MP2 => ($nod_perl::VERSION >= 1.99);
die "I want nod_perl 2.0!'" unless MP2;

o SENV{ GATEWAY_| NTERFACE} - issetto CA - Per |/ 1. 1 for compatibility with mod_perl 1.0.
Thisvariableis deprecated in mod_perl 2.0. Use SENV{ MOD_PERL} instead.

mod_per| passes (exports) the following shell environment variables (if they are set) :
® PATH - Executables search path.
® TZ-TimeZone.

Any of these environment variables can be accessed via “ENV.

2 6 Dec 2003

Writing mod_perl Handlers and Scripts 1.5 Code Developing Nuances

1.4.2 [Threaded MPM or not?

If the code needs to behave differently depending on whether it's running under one of the threaded
MPMs, or not, the class method Apache: : MPM >i s_t hr eaded can be used. For example:

use Apache:: MPM ();
i f (Apache:: MPM >i s_t hreaded) {
require APR: : CS;
my $tid = APR : OS::thread_current();
print "current thread id: $tid (pid: $$)";

}
el se {

print "current process id: 3";
}

This code prints the current thread id if running under a threaded MPM, otherwise it prints the processid.

1.4.3 Writing MPM-specific Codg

If you write a CPAN module it’s a bad idea to write code that won’t run under all MPMs, and developers
should strive to write a code that works with all mpms. However it's perfectly fine to perform different
things under different mpms.

If you don’t develop CPAN modules, it's perfectly fine to develop your project to be run under a specific
MPM.

use Apache:: MPM ();
ny $npm = | ¢ Apache: : MPM >show;
if ($mpmeq 'prefork’) {

prefork-specific code

}
elsif ($mpmeq 'worker’) {
wor ker-specific code

}
elsif ($nmpmeqg "winnt’) {
w nnt - speci fic code
}
el se {
others. ..

}

1.5 |Code Developing Nuances

1.5.1 |Auto-Reloading Modified Modules with Apache::Reload

META: need to port Apache::Reload notes from the guide here. but the gist is:

6 Dec 2003 3

1.6 Integration with Apache Issues

Per | Modul e Apache: : Rel oad

Per || ni t Handl er Apache: : Rel oad

#Per | PreConnect i onHandl er Apache: : Rel oad

Per| Set Var Rel oadAll O f

Per| Set Var Rel oadMbdul es "ModPerl::* Apache::*"

Use:

Per | I ni t Handl er Apache: : Rel oad

if you need to debug HTTprotocol handlersUse:

Per | PreConnecti onHandl er Apache: : Rel oad
for anyhandlers.

Though notice that we have startegtadice thefollowing style in ourmodules:
package Apache:: \Whatever;

use strict;
use warni ngs FATAL => "all’

FATAL => ’al |’ escdatesall warningsinto fatal errors. So whefjpache: : What ever is modified
and reloaded bjpache: : Rel oad the request is abortet@herdore if you follow this very healthy style
and want to us@pache: : Rel oad, flex thestricnessby changng it to:

use warni ngs FATAL => "all’;
no warni ngs ’'redefine’;

but youprobebly still want to get theedefine warnngs butdowngradethem to be non-fatal. THellow-
ing will do thetrick:

use warni ngs FATAL => ’"all’;

no warni ngs ’'redefine’;
use warni ngs 'redefine’;

Perl 5.8.0 allows to do all this in olire:
use warni ngs FATAL => "all’, NONFATAL => ’'redefine’;

but if your code may be used with older perl versions,protebly don’'t want to use this nefunctional-
ity.

Refer to theperllexwarn manpage for moraformétion.

1.6 |Integration with Apache | ssues

In thefollowing sections we discuss the specifics of Apduobieavor relevantto mod_perbevebpers

4 6 Dec 2003

Writing mod_perl Handlers and Scripts 1.7 Perl Specificsin the mod_perl Environment

1.6.1 [Sending HT TP Response Header §

Apache 2.0 doesn’t provide a method to force HTTP response headers sending (what used to be done by
send_htt p_header () in Apache 1.3). HTTP response headers are sent as soon as the first bits of the
response body are seen by the specia core output filter that generates these headers. When the response
handler send the first chunks of body it may be cached by the mod_perl internal buffer or even by some of
the output filters. The response handler needs to flush in order to tell al the components participating in
the sending of the response to pass the data out.

For example if the handler needs to perform a relatively long-running operation (e.g. a slow db lookup)
and the client may timeout if it receives nothing right away, you may want to start the handler by setting
the Content-Type header, following by an immediate flush:

sub handl er {
ny $r = shift;
$r->content _type('text/htm’);
$r->rflush; # send the headers out

$r->print(long_operation());
return Apache:: OK;
}

If this doesn’t work, check whether you have configured any third-party output filters for the resource in
question. Improperly written filter may ignore the orders to flush the data.

META: add alink to the notes on how to write well-behaved filters at handlers/filters

1.6.2 |[Sending HTTP Response Body|

In mod_perl 2.0 a response body can be sent only during the response phase. Any attempts to do that in
the earlier phases will fail with an appropriate explanation logged into the error_log file.

This happens due to the Apache 2.0 HTTP architecture specifics. One of the issues is that the HTTP
response filters are not setup before the response phase.

1.7 Perl Specificsin the mod perl Environment

In the following sections we discuss the specifics of Perl behavior under mod_perl.

1.7.1 |Request-localized Globalg

mod_perl 2.0 provides two types of Set Handl er handlers. modper| and per| - scri pt. Remember
that the Set Handl er directive is only relevant for the response phase handlers, it neither needed nor
affects non-response phases.

6 Dec 2003 5

1.8 Threads Coding Issues Under mod_perl

Under the handler:

Set Handl er perl-script

several specia global Perl variables are saved before the handler is called and restored afterwards. This
includes: YENV, @ NC, $/ , STDOUT's$| and END blocks array (PL_endav).

Under:

Set Handl er nodper |

nothing is restored, so you should be especialy careful to remember localize all special Perl variables so
the local changes won't affect other handlers.

1.7.2

In the normal Perl code exit() is used to stop the program flow and exit the Perl interpreter. However
under mod_perl we only want the stop the program flow without killing the Perl interpreter.

Y ou should take no action if your code includes exit() calls and it’s OK to continue using them. mod_perl
worries to override the exit() function with its own version which stops the program flow, and performs al
the necessary cleanups, but doesn’t kill the server. Thisis done by overriding:

*CORE: : ALOBAL: :exit = \&WbdPerl::Uil::exit;
so if you messup with* CORE: : GLOBAL: : exi t yourself you better know what you are doing.

You can till call CORE: : exi t tokill the interpreter, again if you know what you are doing.

1.8 [Threads Coding | ssues Under mod per|

The following sections discuss threading issues when running mod_perl under athreaded MPM.

1.8.1 [Thread-environment | ssueq

The "only" thing you have to worry about your code is that it’s thread-safe and that you don't use func-
tionsthat affect all threads in the same process.

Perl 5.8.0 itself is thread-safe. That means that operations like push() , map(), chonmp(), =,/, +=, etc.
are thread-safe. Operations that involve system calls, may or may not be thread-safe. It al depends on
whether the underlying C libraries used by the perl functions are thread-safe.

For example the function | ocal ti me() isnot thread-safe when the implementation of asct i me(3) is
not thread-safe. Other usually problematic functionsincluder eaddi r (), srand(), etc.

Another important issue that shouldn’t be missed is what some people refer to as thread-locality. Certain
functions executed in a single thread affect the whole process and therefore all other threads running
inside that process. For example if you chdi r () in one thread, all other thread now see the current

6 6 Dec 2003

Writing mod_perl Handlers and Scripts 1.9 Maintainers

working directory of that thread that chdi r () ’ed to that directory. Other functions with similar effects
include unask(), chr oot (), etc. Currently there is no cure for this problem. You have to find these
functionsin your code and replace them with alternative solutions which don’t incur this problem.

For more information refer to the perlthrtut (http://perldoc.comyper!5.8.0/pod/perIthrtut.html) manpage.

1.8.2 [Deploying Threadg

This is actually quite unrelated to mod_perl 2.0. You don’'t have to know much about Perl threads, other
than [Thread-environment Issueq, to have your code properly work under threaded MPM mod_perl.

If you want to spawn your own threads, first of all study how the new ithreads Perl model works, by

reading the perlthrtut, threads (http://search.cpan.org/search?query=threadd) and threads::shared
(http: /7sear ch.cpan.or g/sear ch?quer y= threads¥%3A%3Ashar ed) manpages.

Artur Bergman wrote an article which explains how to port pure Perl modules to work properly with Perl
ithreads. Issues with chdir () and other functions that rely on shared process datastructures are
discussed. |http: //mwww.perl.comvlpt/a/2002/06/11/thr eads.htmi}

1.8.3 [Shared Variableq

Glaobal variables are only global to the interpreter in which they are created. Other interpreters from other
threads can’t access that variable. Though it's possible to make existing variables shared between several
threads running in the same process by using the function t hr eads: : shar ed: : shar e() . New vari-
ables can be shared by using the shared attribute when creating them. This feature is documented in the
threads: : shared (http://search.cpan.or g/sear ch?query=threads%3A%3Ashared) manpage.

1.9 M aintainer s

Maintainer is the person(s) you should contact with updates, corrections and patches.

1.10 |Authors

Only the mgjor authors are listed above. For contributors see the Changesfile.

6 Dec 2003 7

http://perldoc.com/perl5.8.0/pod/perlthrtut.html
http://search.cpan.org/search?query=threads
http://search.cpan.org/search?query=threads%3A%3Ashared
http://www.perl.com/lpt/a/2002/06/11/threads.html
http://search.cpan.org/search?query=threads%3A%3Ashared

Writing mod_perl Handlers and Scripts

Table of Contents:

1 [Writi nq mod perl Handlers and Scripts|
1.1 [Description
1.2 [Prerequisited .
13 IVVhere the M ethods L|ve|
1.4 |Goodies ToolkKif].
1.4.1 |Environment Variableq
1.4.2 [Threaded MPM or not? .
1.4.3 |Writing MPM-specific Codg .
1.5 |Code Developing Nuances

1.5.1 |[Auto-Reloading Modified Moduleswnh Apache Reload

1.6 [Integration with Apache | ssueq .
1.6.1 |Sending HTTP Response Headerq .
1.6.2 |Sending HTTP Response Body|

1.7 |Perl Specificsin the mod perl Environment]
1.7.1 |Request-localized Globalg
1.7.2 [exit()] -

1.8 [Threads Cod| ng Issues Under mod jall
1.8.1 [Thread-environment Issueq
1.8.2 |Deploying Threadq
1.8.3 |Shared Variableg

1.9 [Maintainerd.

1.10

6 Dec 2003

Table of Contents:

N~NNNOOOUTOTONTOITRR WWWWNNNNDN PP

	1€€Writing mod_perl Handlers and Scripts
	1.1€€Description
	1.2€€Prerequisites
	1.3€€Where the Methods Live
	1.4€€Goodies Toolkit
	1.4.1€€Environment Variables
	1.4.2€€Threaded MPM or not?
	1.4.3€€Writing MPM-specific Code

	1.5€€Code Developing Nuances
	1.5.1€€Auto-Reloading Modified Modules with Apache::Reload

	1.6€€Integration with Apache Issues
	1.6.1€€Sending HTTP Response Headers
	1.6.2€€Sending HTTP Response Body

	1.7€€Perl Specifics in the mod_perl Environment
	1.7.1€€Request-localized Globals
	1.7.2€€exit†‡

	1.8€€Threads Coding Issues Under mod_perl
	1.8.1€€Thread-environment Issues
	1.8.2€€Deploying Threads
	1.8.3€€Shared Variables

	1.9€€Maintainers
	1.10€€Authors

