Running and Developing Tests with the Apache::Test Framework 1 Running and Developing Tests with the Apache::Test Framework

1 Running and Devebping Tests with the
Apache:: TestFramework

6 Dec 2003 1

1.1 Description

1.1 Description|

Thetitle is self-explanatory :)

The Apache: : Test framework was designed for creating test suits for products running on Apache
httpd webserver (not necessarily mod_perl). Originally designed for the mod_perl Apache module, it was
extended to be used for any Apache module.

This chapter istalking about the Apache: : Test framework, and in particular explains how to:

1. run existing tests
2. setup atesting environment for a new proj ect
3. develop new tests

1.2 Basics of Perl Modules Testing

The tests themselves are written in Perl. The framework provides an extensive functionality which makes
the tests writing a simple and therefore enjoyable process.

If you have ever written or looked at the tests most Perl modules come with, Apache: : Test uses the
same concept. The script t/TEST is running all the files ending with .t it finds in the t/ directory. When
executed atypical test prints the following:

1..3 # going to run 3 tests
ok 1 # the first test has passed
ok 2 # the second test has passed

not ok 3 # the third test has failed
Every ok or not ok isfollowed by the number which tells which sub-test has succeeded or failed.

tY/TEST usesthe Test : : Har ness module which intercepts the STDOUT stream, parses it and at the end
of the tests print the results of the tests running: how many tests and sub-tests were run, how many
succeeded, skipped or failed.

Some tests may be skipped by printing:
1..0 # all tests in this file are going to be skipped

Usually atest may be skipped when some feature is optional and/or prerequisites are not installed on the
system, but thisis not critical for the usefulness of the test. Once you test that you cannot proceed with the
tests and it’s not a must pass test, you just skip it.

By default print() statementsin the test script are filtered out by Test : ;. Har ness. if you want the test to
print what it does (if you decide to debug some test) use - ver bose option. So for example if your test
doesthis:

2 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.3 Prerequisites

print "# testing : feature foo\n";
print "# expected: $expected\n";
print "# received: $received\n";
ok $expected eq $received;

in the normal mode, you won't see any of these prints. But if you run the test with t/ TEST -verbose, you
will see something like this:

testing : feature foo
expected: 2

received: 2

ok 2

When you develop the test you should always put the debug statements there, and once the test works for
you do not comment out or delete these debug statements. This is because if some user reports afailurein
some test, you can ask him to run the failing test in the verbose mode and send you back the report. It’'ll be
much easier to understand what the problem isif you get these debug printings from the user.

In the section several helper functions which make the tests writing easier are discussed.

For more details about the Test : : Har ness module please refer to its manpage. Also see the Test
manpage about Perl’ stest suite.

1.3 |Prerequisites

In order to use Apache: : Test it hasto beinstalled first.

Install Apache: : Test using the familiar procedure:
% cd Apache- Test

% per| Makefile.PL
% make && nake test && make install

If youinstall mod_perl 2.0, you get Apache: : Test installed aswell.

1.4 Running Tests

It's much easier to copy-cat things, than creating from scratch. 1t’s much easier to develop tests, when you
have some existing system that you can test, see how it works and build your own testing environment in a
similar fashion. Therefore let’sfirst look at how the existing test enviroments work.

You can look at the modperl-2.0's or httpd-test’s (perl-framework) testing environments which both use
Apache: : Test for their test suites.

6 Dec 2003 3

1.4.1 Testing Options

1.4.1 [TestingOption$

Run:

%t/ TEST -help

to get the list of options you can use during testing. Most options are covered furthedattitient

1.4.2 |BasicTesting

Running tests is just like for any CPAN Perl module; firstgegeeate the Makdile file and buildevery
thing with make

% per| Makefile.PL [options]
% nmake

Now we can do the testing. You can run the tests in two ways. The first useais

% nmake test

but it adds quite anvethead since it has to check thaventhing is up to date (the usuabke source
change control)Therdore you have to run it only once aftamnke and for re-running the tests it's faster
to run the tests directhjia:

%t/ TEST

Whennake test ort/TEST are run, all tests found in thealiredory (files ending with.t arerecog
nizedas tests) will beun.

1.4.3 [Individual Testing

To run a single test, simple specify it at the command line. For example to run the t@grdite
collecho.t execute:

%t/ TEST protocol/echo

Notice that you don’t have to add thierefix and.t extersion for the tesfiilenamesif you specify them
explictly, but you can have these as w&herdore thefollowing are all validcommands:

%t/ TEST protocol / echo.t
%t/ TEST t/protocol/echo
%t/ TEST t/protocol/echo.t

The server will be stopped if it was already running and a new one will be started before running the
t/protocol/echo.ttest. At the end of the test the server will be stoin.

When you run specific tests you may want to run them in the verbose modiégmerdhg on how the
test was written, you may get more debnfprmation under this mode. This mode is turned on with
-verboseoption:

4 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.4.4 Repetitive Testing

% t/ TEST -verbose protocol/echo

Y ou can run groups of tests at once. This command:

% ./t/TEST nmodul es protocol/echo

will run all the testsin t/modules/ directory, followed by t/protocol/echo.t test.

1.4.4 |Repetitive Testing|

By default when you run the test without -run-tests option, the server will be started before the testing and
stopped at the end. If during a debugging process you need to re-run tests without a need to restart the
server, you can start the server once:

%t/ TEST -start-httpd

and then run the test(s) with -run-tests option many times:
%t/ TEST -run-tests

without waiting for the server to restart.

When you are done with tests, stop the server with:
%t/ TEST -stop-httpd

When the server is started you can modify .t files and rerun the tests without restarting the server.
However if you modify response handlers, you must restart the server for changes to take an effect.
However the changes are done in the perl code only, it’s possible to orrange for Apache::Test to[handle the
[code rel oad without restarting the server]

The -start-httpd option always stops the server first if any is running.

Normally when t/TEST is run without specifying the tests to run, the tests will be sorted aphabetically. If
tests are explicitly passed as arguments to t/ TEST they will be run in a specified order.

1.4.5 |Parallel Testing

Sometimes you need to run more than one Apache: : Test framework instances at the same time. In this
case you have to use different ports for each instance. Y ou can specify explicitly which port to use, using
the -port configuration option. For example to run the server on port 34343:

%t/ TEST -start-httpd -port=34343
or by setting an evironment variable APACHE _PORT to the desired value before starting the server.

Specifying the port explicitly may not be the most convenient option if you happen to run many instances
of the Apache: : Test framework. The -port=select option comes to help. This option will automati-
cally pick for the next available port. For exampleif you run:

6 Dec 2003 5

1.4.6 Verbose Mode

%t/ TEST -start-httpd -port=sel ect

and there is aready one server from a different test suite which uses the default port 8529, the new server
will try to use a higher port.

There is one problem that remains to be resolved though. It’'s possible that two or more servers running
-port=select will still decide to use the same port, because when the server is configured it only tests
whether the port is available but doesn’t call bind() immediately. Thefore there is a race condition here,
which needs to be resolved. Currently the workaround is to start the instances of the Apache: : Test

framework with a slight delay between each other. Depending on the speed of you machine, 4-5 seconds
can be a good choice. that's approximately the time it takes to configure and start the server on a quite
slow machine.

1.4.6 Verbose Modg

In case something goes wrong you should run the tests in the verbose mode:

%t/ TEST -verbose

In this case the test may print useful information, like what values it expects and what values it receives,
given that the test is written to report these. In the silent mode (without - ver bose) these printouts are
filtered out by Test : : Har ness. When running in the verbose mode usualy it's a good idea to run only
problematic tests to minimize the size of the generated output.

When debugging problems it helps to keep the error_log file open in another console, and see the debug
output in the real time viatail(1):

%tail -f t/logs/error_|og

Of course this file gets created only when the server starts, so you cannot run tail (1) on it before the server
starts. Every timet/ TEST - cl ean isrun, t/logs/error_log gets deleted, therefore you have to run the
tail(1) command again, when the server is started.

1.4.7 |Colored Trace Modg

If your terminal supports colored text you may want to set the environment variable
APACHE TEST_ COLORto 1 to enable the colored tracing when running in the non-batch mode, which
makes it easier to tell the reported errors and warnings, from the rest of the notifications.

1.4.8 [Controlling the Apache:: Test’s Signal to Noise Ratig

In addition to controlling the verbosity of the test scripts, you can control the amount of information
printed by the Apache: : Test framework itself. Similar to Apache's log levels, Apache: : Test uses
these levels for controlling its signal to noise ratio:

6 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.4.9 Stress Testing

enmerg alert crit error warning notice info debug
where emerg is the for the most important messages and debug for the least important ones.

Currently the default level is info, therefore any messages which fall into the info category and above
(notice, warning, etc). If for example you want to see the debug messages you can change the default level
using -trace option:

%t/ TEST -trace=debug ...
or if you want to get only warning messages and above, use:

%t/ TEST -trace=warning ...

1.4.9 |Stress Testing
1.4.9.1 [The Problem|

When we try to test a stateless machine (i.e. all tests are independent), running all tests once ensures that
all tested things properly work. However when a state machine is tested (i.e. where a run of one test may
influence another test) it’s not enough to run all the tests once to know that the tested features actually
work. It's quite possible that if the same tests are run in a different order and/or repeated a few times,
some tests may fail. This usually happens when some tests don't restore the system under test to its pris-
tine state at the end of the run, which may influence other tests which rely on the fact that they start on
pristine state, when in fact it’s not true anymore. In fact it's possible that a single test may fail when run
twice or three timesin a sequence.

1.4.9.2 [The Solution|

To reduce the possibility of such dependency errors, it's important to run random testing repeated many
times with many different pseudo-random engine initialization seeds. Of course if no failures get spotted
that doesn’t mean that there are no tests inter-dependencies, unless all possible combinations were run
(exhaustive approach). Therefore it’s possible that some problems may still be seen in production, but this
testing greatly minimizes such a possihility.

The Apache: : Test framework provides afew options useful for stress testing.
® -times

You can run the tests N times by using the -times option. For example to run al the tests 3 times
specify:

%t/ TEST -tinmes=3

® -order

It's possible that certain tests aren’t cleaning up after themselves and modify the state of the server,
which may influence other tests. But since normally all the tests are run in the same order, the poten-
tial problem may not be discovered until the code is used in production, where the real world testing

6 Dec 2003 7

1.4.9 Stress Testing

hits the problem. Therefore in order to try to detect as many problems as possible during the testing
process, it's may be useful to run testsin different orders.

Thisif of course mosly useful in conjunction with -times=N option.
Assuming that we have tests a, b and c:
O -order=rotate
rotate thetests: a, b, c, a, b, ¢
O -order=repeat
repeat thetests: a,a, b, b, c, ¢
O -order=random
run in the random order, e.g.: a, ¢, ¢, b, a b

In this mode the seed picked by srand() is printed to STDOUT, so it then can be used to rerun the
testsin exactly the same order (remember to log the output).

O -order=SEED

used to initialize the pseudo-random algorithm, which allows to reproduce the same sequence of
tests. For example if we run:

%t/ TEST -order=random -ti nes=5

and the seed 234559 is used, we can repeat the same order of tests, by running:

%t/ TEST -order=234559 -tines=5

Alternatively, the environment variable APACHE _TEST _SEED can be set to the value of a seed
when -order=randomis used. e.g. under bash(1):

% APACHE_TEST_SEED=234559 t/ TEST - order=random -ti mes=5
or with any shell program if you havetheenv(1) utility:

$ env APACHE_TEST_SEED=234559 t/TEST - order =random -ti nes=5

1.4.9.3 |Resolving Sequence Problemg

When this kind of testing is used and afailure is detected there are two problems:

1. First is to be able to reproduce the problem so if we think we fixed it, we could verify the fix. This
one is easy, just remember the sequence of tests run till the failed test and rerun the same sequence
once again after the problem has been fixed.

8 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.4.9 Stress Testing

2. Second is to be able to understand the cause of the problem. If during the random test the failure has
happened after running 400 tests, how can we possibly know which previously running tests has
caused to the failure of the test 401. Chances are that most of the tests were clean and don’t have
inter-dependency problem. Therefore it'd be very helpful if we could reduce the long sequence to a
minimum. Preferably 1 or 2 tests. That's when we can try to understand the cause of the detected

problem.

1.4.9.4 |Apache: : Test Snoke Solution|

Apache: : Test Snoke attempts to solve both problems. When it's run, at the end of each iteration it
reports the minimal sequence of tests causing a failure. This doesn’t aways succeed, but works in many

cases.

You should create a small script to drive Apache: : Test Snoke, usually /SVIOKE.PL. If you don’t
haveit aready, create it:

#file:t/ SMXKE. PL

use

strict;
war ni ngs FATAL => "all’;

Fi ndBi n;
lib "$FindBin::Bin/../Apache-Test/lib";
lib "$FindBin::Bin/../lib";

Apache: : Test Smoke ();

Apache: : Test Snoke- >new(@GARGV) - >r un;

Usually Makefile.PL converts it into t/SMIOKE while adjusting the perl path, but you can create t/SMOKE
infirst place as well.

t/SMOKE performs the following operations:

1. Runs the tests randomly until the first failure is detected. Or non-randomly if the option -order is set
to repeat or rotate.

2. Then it tries to reduce that sequence of tests to a minimum, and this sequence still causes to the same
failure.

3. It reports all the successful reductions as it goes to STDOUT and report file of the format:
smoke-report-<date>.txt.

In addition the systems build parameters are logged into the report file, so the detected problems
could be reproduced.

6 Dec 2003 9

1.4.10 RunTime Configuration Overriding

4. Goto 1 and run again using a new random seed, which potentially should detect different failures.
Currently for each reduction path, the following reduction algorithms are applied:
1. Binary search: first try the upper half then the lower.

2. Random window: randomize the left item, then the right item and return the items between these two
points.

Y ou can get the usage information by executing:

%t/ SMOKE - hel p

By default you don’t need to supply any arguments to run it, simply execute:

% t / SMOKE

If you want to work on certain tests you can specify them in the same way you do with t/ TEST:

% t/ SMOKE f oo/ bar fool/tar

If you aready have a sequence of tests that you want to reduce (perhaps because a previous run of the
smoke testing didn’t reduce the sequence enough to be able to diagnose the problem), you can request to
dojust that:

%t/ SMOKE -order=rotate -tinmes=1 foo/bar foo/tar

-order=rotate is used just to override the default -order=random, since in this case we want to preserve
the order. We also specify -times=1 for the same reason (override the default which is 50).

You can override the number of srand() iterations to perform (read: how many times to randomize the
sequence), the number of times to repeat the tests (the default is 10) and the path to the file to use for
reports:

%t/ SMXKE -times=5 -iterations=20 -report=../nyreport.txt

Finally, any other options passed will be forwardedtot / TEST asis.

1.4.10 RunTime Configuration Overriding

After the server is configured during make test orwitht/ TEST - confi g, it's possible to explicitly
override certain configuration parameters. The override-able parameters are listed when executing:

%t/ TEST -hel p
Probably the most useful parameters are:

e -preamble

10 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.4.11 Reguest Generation and Response Options

configuration directives to add at the beginning of httpd.conf. For example to turn the tracing on:
%t/ TEST -preanble "Perl Trace all"
® -postamble
configuration directives to add at the end of httpd.conf. For example to load a certain Perl module:
%t/ TEST - postanbl e "Perl Modul e MyDebughMode”
® -user
run as user nobody:
%t/ TEST -user nobody
® -port
run on a different port:
%t/ TEST -port 8799
® -servername
run on a different server:
%t/ TEST -servernane test.exanple.com
® -httpd
configure an httpd other than the default (that apxs figures out):
%t/ TEST -httpd ~/ httpd-2.0/httpd
® -apxs
switch to another apxs:

%t/ TEST -apxs ~/ httpd-2.0-prefork/bin/apxs

For acomplete list of override-able configuration parameters see the output of t / TEST - hel p.

1.4.11 |Request Generation and Response Optiong

We have mentioned already the most useful run-time options. Here are some other options that you may
find useful during testing.

® -ping

Ping the server to see whether it runs

6 Dec 2003 11

1.4.11 Reguest Generation and Response Options

%t/ TEST -ping

Ping the server and wait until the server starts, report waiting time.
%t/ TEST - pi ng=bl ock

This can be useful in conjunction with -run-tests option during debugging:
%t/ TEST -ping=bl ock -run-tests

normally, -run-tests will immediately quit if it detects that the server is not running, but with
-ping=Dblock in effect, it’ll wait indefinitely for the server to start up.

® -head
Issue a HEAD request. For example to request /server-info:
%t/ TEST -head /server-info
® -—get
Request the body of a certain URL via GET.
%t/ TEST -get /server-info
If no URL is specified/ is used.

ALso you can issue a GET reguest but to get only headers as a response (e.g. useful to just check
Cont ent - | engt h)

%t/ TEST -head -get /server-info

GET URL with authentication credentials:

%t/ TEST -get /server-info -usernane dougm - password domi nati on
(please keep the password secret!)
® -post
Generate a POST request.

Read content to POST from string:

%t/ TEST -post /Test Apache__post -content ’'nane=dougn&conpany=coval ent’

Read content to POST from STDI N:

%t/ TEST -post /TestApache__post -content - < foo.txt

12 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.5 Setting Up Testing Environment

Generate a content body of 1024 bytes in length:
%t/ TEST - post /Test Apache__post -content x1024
The same but print only the response headers, e.g. useful to just check Cont ent - | engt h:
%t/ TEST -post -head /Test Apache__post -content x1024
® -header
Add headers to (-get|-post|-head) request:
%t/ TEST -get -header X-Test=10 - header X-Host=exanple.com/server-info
® -sd
Run all tests through mod_sdl:
%t/ TEST -ssl
e -httpll
Run all testswith HTTP/1.1 (KeepAl i ve) requests.
%t/ TEST -httpll
® -proxy
Run all tests through mod_proxy:

%t/ TEST - proxy

The debugging options -debug and -breakpoint are covered in the[Debugging Testd section.

For acomplete list of available switches see the output of t / TEST - hel p.

1.4.12 [Batch Mod¢g

When running in the batch mode and redirecting STDOUT, this state is automagically detected and the no
color mode is turned on, under which the program generates a minimal output to make the log files useful.
If this doesn’'t work and you still get all the mess printed during the interactive run, set the
APACHE TEST NO CCOLOR=1 environment variable.

1.5 |Setting Up Testing Environment

We will assume that you setup your testing environment even before you have started coding the project,
which isavery smart thing to do. Of courseit’ll take you more time upfront, but it’ll will save you alot of
time during the project developing and debugging stages. The |extreme programming methodology| says
that tests should be written before starting the code devel opment.

6 Dec 2003 13

1.5.1 Basic Testing Environment

1.5.1 [Basic Testing Environment]

So the first thing is to create a package and all the helper files, so later on we can distribute it on CPAN.
We are going to develop an Apache: : Amazi ng module as an example.

% h2xs - AXn Apache: : Amazi ng

Witing Apache/ Anazi ng/ Amazi ng. pm

Witing Apache/ Amazi ng/ Makefil e. PL

Witing Apache/ Amazi ng/ READVE

Witing Apache/ Amazi ng/test. pl

Witing Apache/ Amazi ng/ Changes
Witing Apache/ Amazi ng/ MANI FEST

h2xs isanifty utility that gets installed together with Perl and helps us to create some of the files we will
need later.

However we are going to use a little bit different files layout, therefore we are going to move things
around a bit.

We want our module to live in the Apache-Amazing directory, so we do:

% mv Apache/ Amazi ng Apache- Amazi ng
% rndi r Apache

From now on the Apache-Amazing directory is our working directory.

% cd Apache- Amazi ng

We don’'t need the test.pl. as we are going to create a whole testing environment:

% rmtest.pl

We want our package to reside under the lib directory, so later we will be able to do live testing, without
rerunning make every time we change the code:

%nkdir lib

% nkdi r |i b/ Apache
% mv Amazi ng. pm | i b/ Apache

Now we adjust the lib/Apache/Amazing.pmto look like this:
#file:liblApache/ Amazi ng. pm
package Apache:: Amazi ng;

use strict;
use war ni ngs;

use Apache:: RequestRec ();
use Apache:: Request!| O ();

$Apache: : Amazi ng: : VERSION = ' 0. 01" ;

14 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.5.1 Basic Testing Environment

use Apache::Const -conpile => "K' ;

sub handl er {
ny $r = shift;
$r->content _type('text/plain');
$r->print("Amazing'");
return Apache: : OK;
}
1;

END
pod docunentation goes here. ..

The only thing it does is setting the text/plain header and responding with "Amazing!".
Next adjust or create the Makefile.PL file:

#file: Makefile. PL

require 5.6.1;

use ExtUtils:: MakeMaker;

use lib gw(../blib/lib lib);

use Apache:: Test MM gw(test clean); #enable 'nmake test’

prerequisites
ny %equire =

"Apache:: Test" =>"", # any version will do

)
nmy @cripts = gwmt/ TEST);

accept the configs fromcomand |ine
Apache: : Test MM : filter_args();
Apache: : Test MM : generate_script(’t/TEST);

WiteMakefil e(

NAME => ' Apache: : Amazi ng’,

VERSI ON_FROM => ' | i b/ Apache/ Amazi ng. pmi ,
PREREQ PM => \% equire,

cl ean => {

FILES => "@ clean_files() }",

b
($] >= 5.005 ?
(ABSTRACT_FROM => ' | i b/ Apache/ Amazi ng. pmi ,
AUTHOR => ' Stas Bekman <stas (at) stason.org>",
) 2 0
),

sub clean_files {
return [@cripts];

6 Dec 2003 15

1.5.1 Basic Testing Environment

Apache: : Test MMwill do alot of thing for us, such as building a complete Makefile with proper 'test’
and 'clean’ targets, automatically converting .PL and conf/*.in files and more.

As you see we specify a prerequisites hash with Apache:: Test in it, so if the package gets distributed on
CPAN, CPAN. pmshell will know to fetch and install this required package.

Next we create the test suite, which will reside in the t directory:

% mkdir t

First we create t/ TEST.PL which will be automatically converted into t/TEST during perl Makefile.PL
stage:

#file:t/ TEST. PL

use strict;
use warni ngs FATAL => ’all’

use lib gw(lib);
use Apache:: Test RunPerl ();

Apache: : Test RunPer | - >new >r un(@GARGV) ;

Assuming that Apache: : Test isaready installed on your system and Perl can find it. If not you should
tell Perl whereto find it. For example you could add:

use lib gw(Apache-Test/lib);
to t/TEST.PL, if Apache: : Test islocated in aparallel directory.

Asyou can see we didn’t write the real path to the Perl executable, but #! per | . When t/TEST is created
the correct path will be placed there automatically.

Next we need to prepare extra Apache configuration bits, which will reside in t/conf:

% nkdir t/conf

We create the t/conf/extra.conf.in file which will be automatically converted into t/conf/extra.conf before
the server starts. If the file has any placeholders like @ ocunent r oot @ these will be replaced with the
real values specific for the used server. In our case we put the following configuration bitsinto thisfile:

#file:t/conf/extra.conf.in

this file will be Include-d by @erverRoot @httpd. conf
where Apache:: Amazi ng can be found

Perl Switches -1 @erverRoot@../lib

prel oad the nodul e
Per | Modul e Apache: : Amazi ng

16 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.5.1 Basic Testing Environment

<Location /test/amazing>
SetHandler modperl
PerlResponseHandler Apache::Amazing
</Location>

As you can see we just add a simple <Location> container and tell Apache that the namespace
ltest/amazing should be handled by Apache::Amazing module running as a mod_perl handler. Notice
that:

SetHandler modperl

ismod_perl 2.0 configuration, if you are running under mod_perl 1.0 use:

SetHandler perl-script
which also works for mod_perl 2.0.

Now we can create asimple test:
#file:t/basic.t

use strict;
use warnings FATAL =>"all’;

use Apache::Amazing;

use Apache::Test;

use Apache::TestUtil;

use Apache::TestRequest 'GET_BODY?;
plan tests => 2;

ok 1; # simple load test

my $url =/test/amazing’;
my $data = GET_BODY $url;

ok t_cmp(
"Amazing!",

$data,
"basic test",

);
Now create the README file.

% touch README

Don't forget to put in the relevant information about your module, or arrange for ExtU tils ::Make -
Maker ::WriteMake file () todo thisfor you with:

6 Dec 2003 17

1.5.1 Basic Testing Environment

#file: Makefile.PL

=
WiteMakefil e(
#...
dist => {
PREOP => 'pod2text |ib/Apache/ Amazi ng. pm > $(DI STVNAME) / READMVE' ,
}
#...

)

in this case README will be created from the documenation POD sections in lib/Apache/Amazing.pm, but
the file has to exists for make dist to succeed.

and finally we adjust or create the MANIFEST file, so we can prepare a complete distribution. Therefore
welist all the files that should enter the distribution including the MANIFEST file itself:

#f il e: MANI FEST

I'i b/ Apache/ Amazi ng. pm
t/ TEST. PL

t/basic.t
t/conf/extra.conf.in
Makefile. PL

Changes

README

MANI FEST

That's it. Now we can build the package. But we need to know the location of the apxs utility from the
installed httpd server. We passits path as an option to Makefile.PL:

% per| Makefile.PL -apxs ~/ httpd/ prefork/bin/apxs
% make

% make test

basic........... ok

Al'l tests successful.
Files=1, Tests=2, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU

To ingtall the package run:
% meke install
Now we are ready to distribute the package on CPAN:

% make di st

will create the package which can be immediately uploaded to CPAN. In this example the generated
source package with all the required files will be called: Apache-Amazing-0.01.tar.gz

The only thing that we haven't done and hope that you will do is to write the POD sections for the

Apache: : Amazi ng module, explaining how amazingly it works and how amazingly it can be deployed
by other users.

18 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.5.2 Extending Configuration Setup

1.5.2 [Extending Configuration Setup|

Sometimes you need to add extra httpd.conf configuration and perl startup specific to your project that
uses Apache: : Test . This can be accomplished by creating the desired files with an extension .in in the
t/conf/ directory and running:

pani c% t/ TEST -config

which for each file with the extension .in will create a new file, without this extension, convert any
template placeholders into real values and link it from the main httpd.conf. The latter happens only if the
file have the following extensions:

e _conf.in
will add to t/conf/httpd.conf:
I ncl ude foo. conf
® plin
will add to t/conf/httpd.conf:
Per| Requi re foo. pl
® other
other fileswith .in extension will be processed as well, but not linked from httpd.conf.
Files whose name matches the following pattern:
/\.last\.(conf|pl).in$/
will be included very last in httpd.conf.

As mentioned before the converted files are created, any special token in them are getting replaced with
the appropriate values. For example the token @er ver Root @will be replaced with the value defined by
the Ser ver Root directive, so you can write afile that does the following:

#file:nmy-extra.conf.in
Perl Switches -1 @erverRoot@../lib

and assuming that the ServerRoot is ~/modper|-2.0/t/, when my-extra.conf will be created, it’'ll look like:
#file:nmy-extra. conf

Per| Switches -1~/ nodperl-2.0/t/../1ib

The valid tokens are defined in ¥%Apache: : Test Confi g: : Usage and also can be seen in the output
of t / TEST - hel p’sconfiguration options section. The tokens are case insensitive.

6 Dec 2003 19

1.5.3 Specia Configuration Files

1.5.3 [Special Configuration Fileg

Some of the files in the t/conf directory have a special meaning, since the Apache: : Test framework
uses them for the minimal configuration setup. But they can be overriden:

e if the file t/conf/httpd.conf.irexists, it will be used instead of the default template (in Apache/Test
Corfig.pm).

e if the file t/conf/extra.conf.irexists, it will be used to generate t/conf/extra.confvith @ ar i abl e@
substitutions.

e if thefilet/conf/extra.conéxists, it will be included by httpd.conf

e if thefile t/conf/modperl_extra.pixists, it will be included by httpd.confas a mod_perl file (PerlRe-
quire).

1.5.4 [Inheriting from System-wide httpd.conf]

Apache: : Test tries to find a global httpd.conffile and inherit its configuration when autogenerating
t/conf/httpd.confFor example it picks LoadModul e directives.

It's possible to explicitly specify which file to inherit from using the - ht t pd_conf option. For example
during the build:

% per| Makefile.PL -httpd_conf /path/to/httpd. conf

or during the configuration:

%t/ TEST -conf -httpd_conf /path/to/httpd.conf

Certain projects need to have a control of what gets inherited. For example if your global httpd.conf
includes adirective:

LoadModul e apreqg_nodul e "/ hone/j oe/ apache2/ nodul es/ nod_apr eq. so”

And you want to run the test suite for Apache: : Request 2.0, inheriting the above directive will load
the pre-installed mod_apreq.s@and not the newly built one, which is wrong. In such cases it’s possible to
tell the test suite which modules shouldn’t be inheritated. In our example Apache- Request has the
following codein t/ TEST.PL

use base ' Apache: : Test Run’
$Apache: : Test Trace: : Level = ’'debug’
mai n: : - >new >r un(GARGVY)

sub pre_configure {
ny $self = shift;
Don't load an installed nod_apreq
Apache: : Test Confi g: : aut oconfi g_ski p_nodul e_add(’ nod_apreqg.c’);

20 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.6 Apache::Test Framework’s Architecture

it subclasses Apache: : Test Run and overrides the pre_configure method, which excludes the module
mod_apreq.c from the list of inherited modules (notice that the extension is .c).

1.6 |Apache::Test Framework’s Architecture

In the previous section we have written a basic test, which doesn’t do much. In the following sections we
will explain how to write more elaborate tests.

When you write the test for Apache, unless you want to test some static resource, like fetching a file,
usually you have to write a response handler and the corresponding test that will generate a request which
will exercise this response handler and verify that the response is as expected. From now we may call
these two parts as client and server parts of the test, or request and response parts of the test.

In some cases the response part of the test runs the test inside itself, so all it requires from the request part
of the test, is to generate the request and print out a complete response without doing anything else. In
such cases Apache: : Test can auto-generate the client part of the test for you.

1.6.1 |Developing Response-only Part of a Test|

If you write only aresponse part of the test, Apache: : Test will automatically generate the correspond-
ing test part that will generated the response. In this case your test should print "ok 1', 'not ok 2' responses
as usual tests do. The autogenerated request part will receive the response and print them out automatically
completing the Test : : Har ness expectations.

The corresponding request part of the test is named just like the response part, using the following tranda-
tion:

$response_test =~ s|t/["]+ Test([M]1+)/(.*).pn| t/\L$I\E $2.t];
so for example t/response/TestApache/write.pm becomes:. t/apache/write.t.

If we look at the autogenerated test t/apache/writet, we can see that it starts with the warning that it has
been autogenerated, so you won't attempt to change it. Then you can see the trace of the calls that gener-
ated this test, in case you want to figure out how the test was generated. And finaly the test loads the
Apache: : Test Request module, imports the GET shortcut and prints the response’s body if it was
successful. Otherwise it dies to flag the problem with the server side. The latter is done because there is
nothing on the client side, that tells the testing framework that things went wrong. Without it the test will
be skipped, and that’s not what we want.

use Apache:: Test Request ' GET_BODY_ASSERT ;
print GET_BODY_ASSERT "/ Test Apache__wite";

Asyou can see the request URI is autogenerated from the response test name:

$response_test =~ s|.*/([M]+)/(.*).pnB|/$1__$2|;

6 Dec 2003 21

1.6.1 Developing Response-only Part of a Test

So t/response/ TestApache/write.pm becomes: /TestApache write.

Now a simple response test may look like this:
#file:t/response/ Test Apache/wite. pm
package Test Apache::wite;

use strict;
use warni ngs FATAL => "al |’

use constant BUFSI Z => 512; #small for testing
use Apache:: Const -conpile => "K' ;

sub handl er {
ny $r = shift;
$r->content _type('text/plain’);
$r->wite("1..2\n");
$r->wite("ok 1")
$r->wite("not ok 2")
Apache: : OK;

}

1;

[F] Apache: : Const ismod_perl 2.0's package, if you test under 1.0, use the Apache: : Const ant s
module instead [/F].

The configuration part for thistest will be autogenerated by the Apache: : Test framework and added to
the autogenerated file t/conf/httpd.conf when make test ort/ TEST -confi gure isrun. Inour case
the following configuration section will be added:
<Location / Test Apache__wite>
Set Handl er nodper|

Per | ResponseHandl er Test Apache::write
</ Locat i on>

Y ou should remember to run:
%t/ TEST -configure
so the configuration file will be re-generated when new tests are added.

Also notice that if you manually add configuration the <Locat i on> path can’'tinclude’ :’ charactersin
the first segment, due to Apache security protection on WinFU platforms. So please make sure that you
don't create entries like:

<Location /Foo::bar/>

Youcaninclude’ :’ charactersin the further ssgments, so thisis OK:

22 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.6.2 Developing Response and Request Parts of a Test

<Location /tests/Foo::bar/>

Of courseif your codeis not intended to run on WinFU you can ignore this detail .

1.6.2 [Developing Response and Request Parts of a Ted]

But in most cases you want to write a two parts test where the client (request) parts generates various
requests and tests the responses.

It's possible that the client part tests a static file or some other feature that doesn’t require a dynamic
response. In this case, only the request part of the test should be written.

If you need to write the complete test, with two parts, you proceed just like in the previous section, but
now you write the client part of the test by yourself. It's quite easy, al you have to do is to generate
requests and check the response. So atypical test will 1ook like this:

#file:t/apache/cool .t

use strict;
use warni ngs FATAL => "all’

use Apache:: Test;

use Apache:: TestUtil;

use Apache:: Test Request ' GET_BCODY' ;
plan tests => 1; # plan one test.
Apache: : Test Request : : modul e(’ defaul t’);
my $config Apache: : Test:: config()

nmy $host port Apache: : Test Request : : host port ($config) |
t _debug("connecting to $hostport");

ny $received

GET_BODY "/ Test Apache__cool "
ny $expected ' "

"CcooL,

ok t_cnp(
$expect ed,
$recei ved,
"testing TestApache::cool"

)

Seethe Apache: : Test Uti | manpage for more info on the t_cmp() function (e.g. it works with regexs
aswell).

And the corresponding response part:
#file:t/response/ Test Apache/ cool . pm
package Test Apache: : cool

use strict;
use warni ngs FATAL => "all’

6 Dec 2003 23

1.6.2 Developing Response and Request Parts of a Test

use Apache::Const -conpile => 'K ;

sub handl er {
ny $r = shift;
$r->content _type('text/plain');

$r->wite("COOL");

Apache: : CK;
}
1;

Again, remember to run t/TEST -clean before running the new test so the configuration will be created for
it.

As you can see the test generates a request to /TestApache cool, and expectsit to return "COOL". If we
run the test:

% ./t/TEST t/apache/ cool

We see:

apache/ coolok
Al'l tests successful.
Files=1, Tests=1, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

But if werun it in the debug (verbose) mode, we can actually see what we are testing, what was expected
and what was received:

apache/cool1..1

connecting to | ocal host: 8529

testing : testing TestApache: : cool

expected: COOL

recei ved: COOL

ok 1

ok

Al'l tests successful.

Files=1, Tests=1, 1 wallclock secs (0.49 cusr + 0.03 csys = 0.52 CPU

So in case in our simple test we have received something different from COOL or nothing at all, we can
immediately see what’s the problem.

The name of the request part of the test is very important. If Apache: : Test cannot find the correspond-
ing test for the response part it’'ll automatically generate one and in this case it’s probably not what you
want. Therefore when you choose the filename for the test, make sure to pick the same Apache: : Test

will pick. So if the response part is named: t/response/TestApache/cool.pm the request part should be
named t/apache/cool .t. See the regular expression that does that in the previous section.

24 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.6.3 Developing Test Response Handlersin C

1.6.3 [Developing Test Response Handlersin C

If you need to exercise some C APl and you don't have a Perl glue for it, you can ill use
Apache: : Test for the testing. It allows you to write response handlers in C and makes it easy to inte-
grate these with other Perl tests and use Perl for request part which will exercise the C module.

The C modules ook just like standard Apache C modules, with a couple of differencesto:
® a
help them fit into the test suite
e b
alow them to compile nicely with Apache 1.x or 2.x.

The httpd-test ASF project is a good example to look at. The C modules are located under:
httpd-test/per|-framework/c-modules/. Look at c-modules/echo_post/echo_post.c for a nice simple
example. mod_echo_post simply echos datathat is POSTed to it.

The differences between vairous tests may be summarized as follows:
e |f thefirstlineis:
#def i ne HTTPD_TEST_REQUI RE_APACHE 1
or
#def i ne HTTPD_TEST_REQUI RE_APACHE 2

then the test will be skipped unless the version matches. If a module is compatible with the version of
Apache used then it will be automatically compiled by t/TEST with - DAPACHEL or - DAPACHE2 so
you can conditionally compileit to suit different httpd versions.

e |f thereis asection bounded by:
#i f CONFI G FOR_HTTPD TEST
#endi f
in the .c file then that section will be inserted verbatim into t/conf/httpd.conf by t/TEST.

There is a certain amount of magic which hopefully allows most modules to be compiled for Apache 1.3
or Apache 2.0 without any conditional stuff. Replace XXX with the module name, for example echo_post
or random_chunk:

® You should:

6 Dec 2003 25

1.6.4 Regquest and Response Methods

#i ncl ude "apache_httpd_test.h"
which should be preceded by an:
#def i ne APACHE_HTTPD_TEST_HANDLER XXX_handl er

apache_httpd_test.h pullsin alot of required includes and defines some constants and types that are
not defined for Apache 1.3.

® The handler function should be:
static int XXX_handl er(request_rec *r);
® At theend of the file should be an:
APACHE_HTTPD_TEST_MODULE(XXX)

where XXX is the same as that in APACHE_HTTPD_TEST_HANDLER. Thiswill generate the hooks
and stuff.

1.6.4 [Request and Response Methodg

If you have LWP (libwww-perl) installed its LWP: : User Agent serves as an user agent in tests, other-
wise Apache: : Test Cl i ent triesto emulate partial LWP functionality. So most of the LWP documen-
tation applies here, but the Apache: : Test framework provides shortcuts that hide many details, making
the test writing a simple and swift task. Before using these shortcuts Apache: : Test Request should
be loaded, and its import() method will fetch the shortcuts into the caller namespace:

use Apache:: Test Request;

Request generation methods issue a request and return a response object (HTTP: : Response if LWP is
available). They are documented in the HTTP: : Request : : Conmon manpage. The following methods
are available:

e GET

Issues the GET request. For example, issue arequest and retrieve the response content:

$url = "$l ocati on?f oo=1&bar =2";
$res = GET $url;
$str = $res->content;

To set request headers, supply them after the $ur | , e.g.:
$res = GET $url, 'Content-type’ => "text/htm’;
e HEAD

Issues the HEAD request. For example issue a request and check that the response’s Content-type is
text/plain:

26 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.6.4 Request and Response Methods

$url "$l ocat i on?f oo=1&bar =2";
$res HEAD $url ;
ok $res->content_type() eq 'text/plain’;

e POST

Issues the POST request. For example:

$content = ' PARAMEYB3’ ;
$res = POST $l ocation, content => $content;

The second argument to POST can be a reference to an array or a hash with key/value pairs to
emulate HTML <form> PCOSTing.

e PUT
Issues the PUT request.
® OPTIONS
META: ?7?7?
These are two special methods added by the Apache: : Test framework:
e UPLOAD

This special method allows to upload a file or a string which will look as an uploaded file to the
server. To upload afile use:

UPLQOAD $l ocation, filename => $fil enane;
Y ou can add extra request headers as well:
UPLOAD $l ocation, filename => $fil enane, ' X-Header-Test’ => 'Test’;
To upload a string as afile, use:
UPLOAD $l ocation, content => 'sone data’;
e UPLOAD BODY
Retrieves the content from the response resulted from doing UPLOAD. It’s equal to:
ny $body = UPLOAD(@) ->content;
For example, this code retrieves the content of the response resulted from file upload request:

ny $str = UPLOAD BODY $l ocation, filenane => $fil enaneg;

Once the response object is returned, various response object methods can be applied to it. Probably the
most useful ones are:

6 Dec 2003 27

1.6.4 Regquest and Response Methods

$content = $res->content;

to retrieve the content fo the respose and:

$content _type = $res->header (' Content-type’');

to retrieve specific headers.

Refer to the HTTP: : Response manpage for a complete reference of these and other methods.

A few response retrieval shortcuts can be used to retrieve the wanted parts of the response. To apply these
simply add the shortcut name to one of the request shortcuts listed earlier. For example instead of retriev-
ing the content part of the response via:

$res = GET $url;
$str = $res->content;
simply use:

$str = CGET_BODY $url;

28

RC
returns the response code, equivalent to:
$r es- >code;
For example to test whether some URL is bogus:

use Apache:: Const ' NOT_FOUND ;
ok GET_RC('/bogus_url’) == NOT_FOUND;

Y ou usualy need to import and use Apache: : Const constants for the response code comparisons,
rather then using codes’ corresponding numerical values directly. You can import groups of code as
well. For example:

use Apache:: Const ’':conmmon’;

Refer to the Apache: : Const manpage for a complete reference. Also you may need to use APR
and mod_perl constants, which reside in APR: : Const and ModPer | : : Const modules respec-
tively.

OK

tests whether the response was successful, equivalent to:

$res->i s_success;

For example:

6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.6.5 Other Request Generation helpers

ok GET_K '/foo0’;
e STR
returns the response (both, headers and body) as a string and is equivalent to:
$res->as_string;
Mostly useful for debugging, for example:

use Apache:: TestUil;
t _debug POST_STR '/test.pl’, content => 'fo0’;

e HEAD
returns the headers part of the response as a multi-line string.

For example, this code dumps all the response headers:

use Apache:: TestUil;
t _debug GET_HEAD ’'/index. htm’;

e BODY

returns the response body and is equivalent to:

$res->cont ent ;

For example, this code validates that the response’ s body is the one that was expected:

use Apache:: TestUil;
ok GET_BQODY('/index.htm ') eq $expect;

e BODY_ASSERT

Same as the BODY shortcut, but will assert if the request has failed. So for example if the test’s output
is generated on the server side, the client side may only need to print out what the server has sent and
we want it to report that the test has failed if the request has failed:

use Apache:: TestUil;
print GET_BODY_ASSERT "/foo0"

1.6.5 [Other Request Generation helperg

META: these methods need documentation

Request part:

Apache: : Test Request::schenme(' http’); #force http for t/TEST -ssl
Apache: : Test Request : : modul e($nodul e) ;

ny $config = Apache:: Test::config();

ny $hostport = Apache:: Test Request:: hostport ($config);

6 Dec 2003 29

1.6.6 Starting Multiple Servers

Getting the request object? Apache:: TestRequest::user_agent()

1.6.6 [Starting Multiple Serverg

By default the Apache: : Test framework sets up only asingle server to test against.

In some cases you need to have more than one server. If this is the situation, you have to override the
maxclients configuration directive, whose default is 1. Usually thisisdoneint / TEST. PL by subclassing
the parent test run class and overriding the new_test_config() method. For example if the parent class is
Apache: : Test RunPer | , you can changeyourt / TEST. PL to be:

use strict;
use warni ngs FATAL => "all’

use lib "../lib"; # test against the source lib for easier dev
use lib map {("../blib/$_", "../7../blib/$_")} gw(lib arch);

use Apache:: Test RunPerl ();
package MyTest;
our @ SA = gw(Apache: : Test RunPerl);
subcl ass new test _config to add sone config vars which will be
replaced in generated httpd. conf
sub new_ test_config {
ny $self = shift;

$sel f->{conf_opts}->{maxclients} = 2;

return $sel f->SUPER: : new_t est _confi g;

}
MyTest - >new >r un(GARGV) ;

1.6.7 Multiple User Agentg

By default the Apache: : Test framework uses a single user agent which talks to the server (thisis the
LWP user agent, if you have LWP installed). You aimost never use this agent directly in the tests, but via
various wrappers. However if you need a second user agent you can clone these. For example:

nmy $ua2 = Apache:: Test Request: : user_agent ()->cl one;

1.6.8 Hitting the Same I nterpreter (Server Thread/Process | nstance)|

When a single instance of the server thread/process is running, all the tests go through the same server.
However if the Apache: : Test framework was configured to to run a few instances, two subsequent
sub-tests may not hit the same server instance. In certain tests (e.g. testing the closure effect or the BEG N
blocks) it's important to make sure that a sequence of sub-tests are run against the same server instance.
The Apache: : Test framework supportsthisinternally.

30 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.6.8 Hitting the Same Interpreter (Server Thread/Process | nstance)

Here is an example from ModPer | : : Regi st ry closure tests. Using the counter closure problem under
ModPer| :: Regi stry:

#file:cgi-bin/closure.p

#l perl -w
print "Content-type: text/plain\r\n\ir\n";

this is a closure (when conpiled inside handler()):
ny $counter =0
counter();

sub counter {
#warn " $$";
print ++$counter;

}

If this script get invoked twice in a row and we make sure that it gets executed by the same server
instance, the first timeit'll return 1 and the second time 2. So here is the gist of the request part that makes
sure that its two subsequent requests hit the same server instance:

#file:closure.t
nmy $url = "/sane_interp/cgi-bin/closure.pl"
ny $sane_interp = Apache:: Test Request::sane_interp_tie($url);

shoul d be no closure effect, always returns 1

ny $first = req($sane_interp, $url);
ny $second = req($sane_interp, $url);
ok t_cmp(

1

$first & & $second && ($second - $first),
"the closure problemis there"

)
sub req {
ny($sane_interp, $url) = @;
ny $res = Apache:: Test Request:: sane_i nterp_do($sane_i nterp,
\ &CET, $url);
return $res ? $res->content : undef;
}

In this test we generate two requests to cgi-bin/closure.pl and expect the returned value to increment for
each new request, because of the closure problem generated by ModPer | : : Regi st ry. Since we don't
know whether some other test has called this script already, we simply check whether the substraction of
the two subsequent requests’ outputs gives avalue of 1.

The test starts by requesting the server to tie asingle instance to all requests made with a certain identifier.
This is done using the same interp _tig() function which returns a unique server instance's indentifier.
From now on any requests made through same _interp_do() and supplying this indentifier as the first argu-
ment will be served by the same server instance. The second argument to same_interp_do() is the method
to use for generating the request and the third is the URL to use. Extra arguments can be supplied if
needed by the request generation method (e.g. headers).

6 Dec 2003 31

1.7 Writing Tests

This technique works for testing purposes where we know that we have just a few server instances. What
happens internally is when same_interp _tie() is called the server instance that served it returns its unique
UUID, so when we want to hit the same server instance in subsequent requests we generate the same
request until we learn that we are being served by the server instance that we want. This magic is done by
using a fixup handler which returns OK only if it sees that its unique id matches. As you understand this
technique would be very inefficient in production with many server instances.

1.7 \Writing Tests

All the communications between tests and Test : : Har ness which executes them is done via STDOUT.
|.e. whatever tests want to report they do by printing something to STDOUT. If atest wants to print some
debug comment it should do it starting on a separate line, and each debug line should start with #. The
t_debug() function from the Apache: : Test Ut i | package should be used for that purpose.

1.7.1 [Defining How Many Sub-Tests Are to Be Run|

Before sub-tests of a certain test can be run it has to declare how many sub-testsit is going to run. In some
cases the test may decide to skip some of its sub-tests or not to run any at al. Therefore the first thing the
test hasto printis:

1..Mn
where M isapositive integer. So if the test plansto run 5 sub-testsit should do:
print "1..5\n";

In Apache: : Test thisisdone asfollows:

use Apache:: Test;
pl an tests => 5;

1.7.2 |Skipping a Whole Test

Sometimes when the test cannot be run, because certain prerequisites are missing. To tell
Test : : Har ness that the wholetest is to be skipped do:

print "1..0 # ski pped because of foo is missing\n";

The optional comment after # ski pped will be used as a reason for test's skipping. Under
Apache: : Test the optional last argument to the plan() function can be used to define prerequisites and
skip the test:

use Apache:: Test;
plan tests => 5, $test_ski ppi ng_prerequisites;

Thislast argument can be:

32 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.2 Skipping aWhole Test

® aSCALAR
the test is skipped if the scalar has afalse value. For example:
plan tests => 5, O;
But thiswon'’t hint the reason for skipping therefore it’s better to use have() :
pl an tests => b5,
have ' LW,
{ "not Wn32" => sub { $"O eq 'MSWNn32'} };

o an ARRAY reference

have_module() is caled for each value in this array. The test is skipped if have_module() returns
false (which happens when at least one C or Perl module from the list cannot be found). For example:

plan tests => 5, [gwW nod_i ndex nod_nmine)];

® a CODE reference

the tests will be skipped if the function returns a false value. For example:

plan tests => 5, \&have_| wp;
the test will be skipped if LWP is not available
There is anumber of useful functions whose return value can be used as a last argument for plan():
® have moduleg()

have modul&() tests for presense of Perl modules or C modules mod_*. It accepts alist of modules or
areference to the list. If at least one of the modules is not found it returns a false value, otherwise it
returns atrue value. For example:

plan tests => 5, have_nodule gw(Chatbot:: Eliza CAd nod_proxy);

will skip the whole test unless both Perl modules Chat bot : : El i za and CA and the C module
mod_proxy.c are available.

® have _min_module_version()
Used to require aminimum version of amodule

For example:

plan tests => 5, have_m n_nodul e_version(Cd => 2.81);

requires CA . pmversion 2.81 or higher.

6 Dec 2003 33

1.7.2 Skipping aWhole Test

Currently works only for perl modules.
® have()
have() called as alast argument of plan() can impose multiple requirements at once.

have()' s arguments can include scalars, which are passed to have_module(), and hash references. If
hash references are used, the keys, are strings, containing a reason for afailure to satisfy this particu-
lar entry, the valuees are the condition, which are satisfaction if they return true. If the value is a
scalar it's used as is. If the value is a code reference, it gets executed at the time of check and its
return value is used to check the condition. If the condition check fails, the provided (in akey) reason
is used to tell user why the test was skipped.

For example:
pl an tests => b5,
have ' LW,
{ "perl >=5.8.0is required" => ($] >= 5.008) },
{ "not Wn32" => sub { $°0O eq ' MBWn32' 1},
"foo is disabled" => \ & s _foo_enabl ed,
}
‘cgid;

In this example, we require the presense of the LWP Perl module, nod_cgi d, that we run under perl
>=57.30nWin32, and that i s_f 0o_enabl ed returns true. If any of the requirements from this
list fail, the test will be skipped and each failed requiremnt will print areason for its failure.

e have perl()

have _perl(’foo’) checks whether the value of $Confi g{f oo} or $Conf i g{ usef oo} isequa to
"define’. For example:

plan tests => 2, have_perl ’ithreads’

if Perl wasn’'t compiled with - Dusei t hr eads the condition will be false and the test will be
skipped.

Also it checks for Perl extensions. For example:

plan tests => 5, have_perl ’'iolayers’
testswhether Per | | Oisavailable.
® have min_perl_version()
Used to require a minimum version of Perl.

For example:

34 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.2 Skipping aWhole Test

plan tests => 5, have_m n_perl _version("5.008001");
requires Perl 5.8.1 or higher.
® have threads()

have_threads checks whether whether threads are supported by both Apache and Perl.
pl an tests => 2, have_t hreads;

e under_construction()

thisisjust a shortcut to skip the test while printing:

"skipped: this test is under construction";

For example:
plan tests => 2, under_constructi on;

® have lwp()
Tests whether the Perl module LWP isinstalled.
® have httpll()

Triesto tell LWP that sub-tests need to be run under HTTP 1.1 protocol. Failsif the installed version
of LWP is not capable of doing that.

e have cgi()
tests whether mod_cgi or mod_cgid is available.
® have apache()

tests for a specific generation of httpd. For example:

plan tests => 2, have_apache 2;

will skip thetest if not run under the 2nd Apache generation (httpd-2.x.xx).

plan tests => 2, have_apache 1;
will skip the test if not run under the 1st Apache generation (apache-1.3.xx).
® have min_apache version

Used to require aminimum version of Apache. For example:

plan tests => 5, have_mi n_apache_version("2.0.40");

6 Dec 2003 35

1.7.3 Skipping Numerous Tests

requires Apache 2.0.40 or higher.
® have apache version
Used to require a specific version of Apache.

For example:

pl an tests => 5, have_apache_version("2.0.40");

requires Apache 2.0.40.

1.7.3 [Skipping Numerous Testsg

Just like you can tell Apache: : Test to run only specific tests, you can tell it to run all but afew tests.

If dl filesin adirectory t/foo should be skipped, create:

#file:t/foolall.t

Alternatively you can specify which tests should be skipped from a single file t/SKIP. This file includes a
list of tests to be skipped. Y ou can include comments starting with # and you can use the * wildcharacter
for multiply files matching.

For exampleif in mod_perl 2.0 test suite we create the following file:
#file:t/SKIP

skip all files in protocol
pr ot ocol

skip basic cgi test
nmodul es/ cgi . t

skip all filter/input_* files
filter/input*.t

In our example the first pattern specifies the directory name protocol, since we want to skip al testsin it.
But since the skipping is done based on matching the skip patterns from t/SKIP against a list of potential
tests to be run, some other tests may be skipped as well if they match the pattern. Therefore it's safer to
use a pattern like this:

protocol /*.t

The second pattern skips a single test modules/cgi.t. Note that you shouldn’t specify the leading t/. The .t
extension is optional, so you can tell:

36 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.4 Reporting a Success or a Failure of Sub-tests

skip basic cgi test
nodul es/ cgi

Thelast pattern tells Apache: : Test to skip al the tests starting with filter/input.

1.7.4 |Reporting a Success or a Failure of Sub-testg

After printing the number of planned sub-tests, and assuming that the test is not skipped, the tests is
running its sub-tests and each sub-test is expected to report its success or failure by printing ok or not ok
respectively followed by its sequential number and anew line. For example:

print "ok 1\n";
print "not ok 2\n";
print "ok 3\n";

In Apache: : Test thisis done using the ok() function which prints ok if its argument is a true value,
otherwise it prints not ok. In addition it keeps track of how many times it was called, and every time it
prints an incremental number, therefore you can move sub-tests around without needing to remember to
adjust sub-test’ s sequential number, since now you don’t need them at al. For example this test snippet:

use Apache:: Test;

use Apache:: TestUtil;

plan tests => 3;

ok "success";

t _debug("expecting to fail next test");

Ok nn ;
ok O;

will print:

1..3

ok 1

expecting to fail next test
not ok 2

not ok 3

Most of the sub-tests perform one of the following things:
® test whether some variableis defined:
ok defined $object;
® test whether some variableis atrue value:
ok $val ue;

or afalsevalue

ok ! $val ue;

6 Dec 2003 37

1.7.5 Skipping Sub-tests

e test whether areceived from somewhere value is equal to an expected value:

$expected = "a good val ue";
$received = get_val ue();
ok defined $received & & $recei ved eq $expected;

1.7.5 [Skipping Sub-testy

If the standard output line contains the substring # Skip (with variations in spacing and case) after ok or ok
NUMBER, it is counted as a skipped test. Test : : Har ness reports the text after # Skip\St\s+ as a
reason for skipping. So you can count a sub-test as a skipped as follows:

print "ok 3 # Skip for sonme reason\n";

or using the Apache: : Test 'sskip() function which works similarly to ok():

skip $shoul d_skip, $test_ne;

so if $shoul d_ski p istrue, the test will be reported as skipped. The second argument is the one that’s
sent to ok(), so if $shoul d_ski p istrue, anormal ok() sub-test is run. The following example represent
four possible outcomes of using the skip() function:

ski p_subtest _1.t

use Apache:: Test;
pl an tests => 4;

1
0;

ny $ok
ny $not _ok

ny $shoul d_skip = "foo is m ssing";
skip $shoul d_skip, $ok;
ski p $shoul d_ski p, $not_ok;

$shoul d_skip = '';
skip $shoul d_skip, $ok;
ski p $shoul d_ski p, $not_ok;

now we run the test:

% ./t/TEST -run-tests -verbose skip_subtest_1

ski p_subtest _1....1..4

ok 1 # skip foo is mssing

ok 2 # skip foo is mssing

ok 3

not ok 4

Failed test 4 in skip_subtest_1.t at line 13

Failed 1/1 test scripts, 0.00% okay. 1/4 subtests failed, 75.00% okay.

As you can see since $shoul d_ski p had a true value, the first two sub-tests were explicitly skipped
(using $shoul d_ski p as a reason), so the second argument to skip didn't matter. In the last two
sub-tests $shoul d_ski p had a false value therefore the second argument was passed to the ok() func-
tion. Basically the following code:

38 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.6 Running only Selected Sub-tests

$shoul d_skip = '’;
skip $shoul d_skip, $ok;
ski p $shoul d_ski p, $not_ok

isequivaent to:

ok $ok;
ok $not _ok

However if you want to uset _cnp() or some other function call in the arguments to ok () that won't
quite work since the function will be aways called no matter whether the first argument will evaluate to a
true or afalse value. For example, if you had a function:

ok t_cnp($expected, $received, $coment);

and now you want to run this sub-test if module HTTP: : Dat e isavailable, changing it to:

ny $shoul d_skip = eval { require HTTP::Date } ? "" : "m ssing HITP:: Date"
skip $shoul d_skip, t_cnp($expected, $received, $comment);

will gtill runt _cnp() evenif HTTP: : Dat e is not available. Therefore it's probably better to code it in
thisway:

if (eval {require HTTP::Date}) {
ok t_cmp($expected, $received, $conment);

}
el se {

skip "Skip HTTP:: Date not found"
}

1.7.6 [Running only Selected Sub-testg

Apache: : Test aso alowsto write testsin such away that only selected sub-tests will be run. The test
simply needs to switch from using ok() to sok(). Where the argument to sok() is a CODE reference or a
BLOCK whose return value will be passed to ok(). If sub-tests are specified on the command line only
those will be run/passed to ok(), the rest will be skipped. If no sub-tests are specified, sok() worksjust like
ok(). For example, you can write this test:

#file:skip_subtest_2.t

use Apache:: Test;
pl an tests => 4;

sok {1};

sok {0};

sok sub {'true’'};
sok sub {''};

and then ask to run only sub-tests 1 and 3 and to skip the rest.

6 Dec 2003 39

1.7.7 Todo Sub-tests

% ./t/TEST -verbose skip_subtest_2 1 3
skip_subtest _2....1..4

ok 1

ok 2 # skip skipping this subtest

ok 3

ok 4 # skip skipping this subtest

ok, 2/ 4 skipped: skipping this subtest
Al tests successful, 2 subtests skipped

Only the sub-tests 1 and 3 get executed.

A range of sub-teststo run can be given using the Perl’ s range operand:

% ./t/TEST -verbose skip_subtest_2 2..4

ski p_subtest_2....1..4

ok 1 # skip askipping this subtest

not ok 2

Failed test 2

ok 3

not ok 4

Failed test 4

Failed 1/1 test scripts, 0.00% okay. 2/4 subtests failed, 50.00% okay.

In thisrun, only the first sub-test gets executed.

1.7.7 [Todo Sub-testd

In a safe fashion to skipping specific sub-tests, it's possible to declare some sub-tests as todo. This distinc-
tion is useful when we know that some sub-test is failing but for some reason we want to flag it as a todo
sub-test and not as a broken test. Test : : Har ness recognizes todo sub-tests if the standard output line
contains the substring # TODO after not ok or not ok NUMBER and is counted as a todo sub-test. The text
afterwards is the explanation of the thing that has to be done before this sub-test will succeed. For
example:

print "not ok 42 # TODO not i npl enmented\n”;

In Apache: : Test thiscan be done with passing areference to alist of sub-tests numbers that should be
marked as todo sub-test:

plan tests => 7, todo => [3, 6];

In this example sub-tests 3 and 6 will be marked as todo sub-tests.

1.7.8 [Making it Easy to Debug|

Ideally we want all the tests to pass, reporting minimum noise or none at all. But when some sub-tests fail
we want to know the reason for their failure. If you are a developer you can dive into the code and easily
find out what’ s the problem, but when you have a user who has a problem with the test suite it'll make his
and your life much easier if you make it easy for the user to report you the exact problem.

40 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.8 Making it Easy to Debug

Usually this is done by printing the comment of what the sub-test does, what is the expected value and
what’ sthe received value. Thisis agood example of debug friendly sub-test:

#fil e: debug_coments.t

use Apache:: Test;
use Apache:: TestUti |
plan tests => 1

t _debug("testing feature foo");

$expected = "a good val ue”

$received = "a bad val ue"

t _debug("expected: $expected");

t _debug("recei ved: $received");

ok defined $received & & $recei ved eq $expected;

If in thisexample $r ecei ved gets assigned a bad value string, the test will print the following:

%t/ TEST debug_conmment s
debug_coments....FAILED test 1

No debug help here, since in a non-verbose mode the debug comments aren’t printed. If we run the same
test using the verbose mode, enabled with - ver bose:

%t/ TEST -verbose debug_coments
debug_coments....1..1

testing feature foo

expected: a good val ue

received: a bad val ue

not ok 1

we can see exactly what' s the problem, by visual expecting of the expected and received values.

It' s true that adding afew print statements for each sub tests is cumbersome, and adds a lot of noise, when
you could just tell:

ok "a good val ue" eq "a bad val ue"

but no fear, Apache: : Test Uti | comesto help. The function t_cmp() does all the work for you:

use Apache:: Test;
use Apache:: TestUtil;
ok t_cmp(
"a good val ue",
"a bad val ue",
"testing feature foo");

t_cmp() will handle undef ’ined values as well, so you can do:

ny $expect ed;
ok t_cmp(undef, $expected, "should be undef");

6 Dec 2003 41

1.7.9 Tie-ing STDOUT to a Response Handler Object

Finally you can uset_cmp() for regex comparisons. This feature is mostly useful when there may be more
than one valid expected value, which can be described with regex. For example this can be useful to
inspect the value of $@when eval() is expected to fail:

eval {foo();}

if (3@ {
ok t_cmp(qr/”~expecting foo/, $@ "func eval");
}

which isthe same as;

eval {foo();}
if ($@ {

t _debug("func eval");

ok $@=~ /"expecting foo/ ? 1 : O;
}

1.7.9 [Tie-ing STDOUT to a Response Handler Object

It's possible to run the sub-tests in the response handler, and simply return them as a response to the client
which in turn will print them out. Unfortunately in this case you cannot use ok() and other functions, since
they print and don't return the results, therefore you have to do it manually. For example:

sub handl er {
ny $r = shift;

$r->print("1..2\n");
$r->print("ok 1\n");
$r->print("not ok 2\n");

return Apache:: X
}

now the client should print the response to STDOUT for Test : : Har ness processing.

If the response handler is configured as:

Set Handl er perl -script

STDOUT is aready tied to the request object $r . Therefore you can now rewrite the handler as:

use Apache:: Test;
sub handl er {
ny $r = shift;
Apache: : Test::test_pmrefresh();
plan tests => 2
ok "true";
ok ""

return Apache:: X

42 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.10 Helper Functions

However to be on the safe side you also have to call Apache::Test::test pm _refresh() allowing plan() and
friends to be called more than once per-process.

Under different settings STDOUT is not tied to the request object. If the first argument to plan() is an
object, such as an Apache: : Request Rec object, STDOUT will be tied to it. The Test . pm global
state will also be refreshed by calling Apache: : Test: :test _pm refresh. For example:

use Apache:: Test;
sub handl er {

ny $r = shift;

plan $r, tests => 2;
ok "true";

ok nn

return Apache: : OK;
}

Yet another aternative to handling the test framework printing inside response handler is to use
Apache: : Test ToStri ng class.

The Apache: : Test ToSt ri ng classisused to capture Test . pmoutput into a string. Example:

use Apache:: Test;
sub handl er {
ny $r = shift;

Apache: : Test ToStri ng->start;

pl an tests => 2;
ok "true";
ok ""

nmy $out put = Apache:: Test ToString->fini sh;
$r->print ($out put);

return Apache: : CK;
}

In this example Apache: : Test ToSt ri ng intercepts and buffers all the output from Test . pmand
can be retrieved with its finish() method. Which then can be printed to the client in one shot. Internally it
calls Apache::Test::test_ pm_refresh() to make sure plan(), ok() and other functions() will work correctly
more than one test is running under the same interpreter.

1.7.10 [Helper Functiong

Apache: : Test Uti | provides other helper functions, useful for writing tests, not mentioned in this
tutorial:

t_cnp()

t _debug()

t _append_file()
t_ wite file()

6 Dec 2003 43

1.7.11 Auto Configuration

t_open_file()

t_nkdir()

t_rmtree()

t_is_equal ()
t_wite_perl_script()
t_wite_shell_script()

t _chown()
t_server_log_error_is_expected()
t_server_log_warn_i s_expected()
t_client_log_error_is_expected()>
t_client_log_warn_is_expected()>

Seethe Apache: : Test Uti | manpage for more information.

1.7.11 |Auto Configuration|

If the test is comprised only from the request part, you have to manually configure the targets you are
going to use. Thisisusually done in t/conf/extra.conf.in.

If your tests are comprised from the request and response parts, Apache: : Test automatically adds the
configuration section for each response handler it finds. For example for the response handler:

package Test Response: : nice;
sone code
1;

it will put into t/conf/httpd.conf:

<Location / Test Response__ni ce>

Set Handl er nodper |

Per| ResponseHandl er Test Response: : nice
</ Locati on>

If you want to add some extra configuration directives, usethe DATA _ section, asin this example:

package Test Response::nice;
sone code

1;

__DATA

Per | Set Var Foo Bar

These directives will be wrapped into the <Locat i on> section and placed into t/conf/httpd.conf:

<Location / Test Response__ni ce>
Set Handl er nodper |
Per | ResponseHandl er Test Response: : ni ce
Per| Set Var Foo Bar

</ Locati on>

This autoconfiguration feature was added to:

44 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.7.11 Auto Configuration

simplify (less lines) test configuration.
® ensure unique namespace for <Location ...>'s.

force <Location ...> names to be consistent.

prevent clashes within main configuration.

1.7.11.1 [Forcing Configuration Sectionsinto the Top L evel|

If some directives are supposed to go to the base configuration, i.e. not to be automatically wrapped into
<Location > block, you should use a special <Base>..</Base> block:

__DATA__
<Base>

PerlSetVar Config ServerConfig
<Base>
PerlSetVar Config LocalConfig

Now the autogenerated section will ook like this:

PerlSetVar Config ServerConfig

<Location /TestResponse__nice>
SetHandler modperl
PerlResponseHandler TestResponse::nice
PerlSetVar Config LocalConfig

</Location>

As you can see the <Base>..</Base> block has gone. As you can imagine this block was added to
support our virtue of laziness, since most tests don’t need to add directives to the base configuration and
we want to keep the configuration sections in tests to a minimum and let Perl do the rest of the job for us.

1.7.11.2 Bypassing Auto-Configur ation|

In more complicated cases, usualy when virtual hosts containers are involved, the auto-configuration
might stand in away and you will simply want to bypass it. If that’'s the case, put the configuration inside
the <NoAuto Config >..</NoAuto Config > container. For example:

<NoAutoConfig>
<VirtualHost TestPreConnection::note>
PerlPreConnectionHandler TestPreConnection::note

<Location /TestPreConnection__note>
SetHandler modperl
PerlResponseHandler TestPreConnection::note::response
</Location>
</VirtualHost>
</NoAutoConfig>

Notice, that the internal sections will be still parsed, tokens @var@will be substituted and Virtu al -
Host sections will be rewritten with an automatically assigned port number and Server Name

6 Dec 2003 45

1.7.11 Auto Configuration

1.7.11.3 |Virtual Hostg

Apache: : Test automatically assigns an unused port for the virtual host configuration. Just make sure
that you use the package name in the place where you usually specify a hostname: port value. For example
for the following package:

#file: MyApacheTest/ Foo. pm
package MyApacheTest: : Foo;

1;
END

<Vi rtual Host MyApacheTest : : Foo>
<Location /test_foo>

</ Locati on>
</ Vi rt ual Host >

After running:

% t/ TEST -conf

Check the auto-generated t/conf/httpd.conf and you will find what port was assigned. Of course it can
change when more tests which require a special virtual host are used.

Now in the request script, you can figure out what port that virtual host was assigned, using the package
name. For example:

#file:test_foo.t

use Apache:: Test Request;

ny $nodul e = "MyApacheTest: : Foo; ";

nmy $config = Apache: : Test::config();
Apache: : Test Request : : nodul e($nodul e) ;

ny $host port = Apache:: Test Request : : host port ($confi g);

print GET_BODY_ASSERT "http://$hostport/test_foo";

1.7.11.4 |Running Pre-Configur ation Cod¢g

Sometimes you need to setup things for the test. This usually includes creating directories and files, and
populating the latter with some data, which will be used at request time. Instead of performing that opera-
tion in the client script every time atest isrun, it's usually better to do it once when the server is config-
ured. If you wish to run such a code, all you have to do is to add a specia subroutine
APACHE_TEST_CONFI GURE in the response package (assuming that that response package exists).
When server is configured (t / TEST - conf) it scans al the response packages for that subroutine and if
found runsit.

APACHE_TEST_CONFI GURE accepts two arguments: the package name of the file this subroutine is
defined in and the Apache: : Test Conf i g configuration object.

46 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework

Here is an example of a package that uses such a subroutine:
package TestDirective:: perl nodul e;

use strict;
use warni ngs FATAL => "all’

use Apache:: Test ();

use Apache:: RequestRec ();

use Apache:: Request!| O ();

use File::Spec::Functions gw(catfile);

use Apache:: Const -conpile => "K' ;

sub handl er {

ny $r = shift;

$r->content _type('text/plain’);

$r - >put s($ApacheTest: : Per|l Modul eTest: : MAG C || "');
Apache: : OK;

sub APACHE_TEST_CONFI GURE {
ny ($class, $self) = @;

ny $vars = $sel f->{vars};
nmy $target_dir = catfile $vars->{docunentroot}, 'testdirective’;

ny $magi c = _ PACKAGE__;
nmy $content = <<ECF;
package ApacheTest: : Per| Modul eTest ;
\ $ApacheTest : : Per| Modul eTest:: MAG C = ' $magi ¢’ ;

1;
ECF
ny $file = catfile $target _dir,
" perl nodul e-vh’, ' ApacheTest’, ' Perl Modul eTest. pm ;
$self->witefile($file, $content, 1);
}
1;

1.7.11 Auto Configuration

In this example’ s function a directory is created. Then afile with some perl code as a content is created.

1.7.11.5 |Controlling the Configur ation Order|

Sometimes it's important in which order the configuration section of each response package is inserted.
Apache: : Test controls the insertion order using a specia token APACHE_TEST_CONFI G_CORDER.
To decide on the configuration insertion order, Apache: : Test scans al response packages and tries to

match the following pattern:

| APACHE_TEST CONFI G_ORDER\ s+([+-] 2\ d+) /

6 Dec 2003

47

1.7.12 Threaded versus Non-threaded Perl Test’s Compatibility

So you can assign any integer number (positive or negative). If the match fails, it's assumed that the
token’s value is 0. Next a simple numerical search is performed and those configuration sections with
lower token value are inserted first.

It's not specified how sections with the same token value are ordered. This usually depends on the order
the files were read from the disk, which may vary from machine to machine and shouldn’t be relied upon.

As dready mentioned by default all configuration sections have a token whose value is 0, meaning that
their ordering is unimportant. Now if you want to make sure that some section is inserted first, assign to it
anegative number, e.g.:

APACHE_TEST_CONFI G_CORDER - 150

Now if a new test is added and it has to be the first, add to this new test a token with a negative value
whose absolute value is higher than - 150, e.g.:

APACHE_TEST_CONFI G_ORDER - 151

or

APACHE_TEST_CONFI G_ORDER - 500

Decide how big the gaps should be by thinking ahead. Thisis similar to the Basic language line numbering
;) In any case, you can aways adjust other tests' token if you need to squeeze a number between two
consequent integers.

If on the other hand you want to ensure that some test is configured last, use the highest positive number,
eg.:

APACHE_TEST_CONFI G_CORDER 100

If some other test needs to be configured just before the one we just inserted, assign a token with a lower
value, e.g..

APACHE_TEST CONFI G_ORDER 99

1.7.12 [Threaded versus Non-threaded Perl Test’s Compatibility

Since the tests are supposed to run properly under non-threaded and threaded perl, you have to worry to
enclose the threaded perl specific configuration bitsin:

<| f Def i ne PERL_USElI THREADS>
... configuration bits
</|fDefine>

Apache: : Test will start the server with -DPERL_USEITHREADS if the Perl isithreaded.

For example Per | Opt i ons +Par ent isvalid only for the threaded perl, therefore you have to write:

48 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.8 Debugging Tests

<| f Def i ne PERL_USElI THREADS>
a new interpreter pool
Per| Opti ons +Parent

</| f Define>

Just like the configuration, the test’s code has to work for both versions as well. Therefore you should
wrap the code specific to the threaded perl into:

if (have_perl ’ithreads’){
ithread specific code

}

which is essentially does alookup in $Config{ useithreads} .

1.7.13 [Retrieving the Server Configuration Datd|

The server configuration data can be retrieved and used in the tests via the configuration object:

use Apache:: Test;
ny $cfg = Apache::Test::config();

1.7.13.1 [Module M agic Number|

The following code retrieves the major and minor MMN numbers.

ny $cfg = Apache::Test::config();

ny $info = $cfg->{httpd_info};

ny $maj or = $i nfo- >{ MODULE_MAG C_NUVBER NAJOR} ;
ny $minor = $i nfo->{ MODULE_MAG C_NUVBER M NOR};

print "maj or=$mmj or, m nor=%$m nor\n";
For example for MMN 20011218: 0, this code prints:

maj or =20011218, mi nor=0

1.8 |Debugging Tests

Sometimes your tests won't run properly or even worse will segfault. There are cases where it's possible
to debug broken tests with simple print statements but usually it's very time consuming and ineffective.
Thereforeit'sagood ideato get yourself familiar with Perl and C debuggers, and this knowledge will save
you alot of time and grief in along run.

1.8.1 [Under C debugger]

mod_perl-2.0 provides built in "make test’ debug facility. So in case you get a core dump during make
test, or just for fun, run in one shell:

6 Dec 2003 49

1.8.2 Under Perl debugger

%t/ TEST -debug

in another shell:

%t/ TEST -run-tests

then the -debugshell will have a (gdb) prompt, type wher e for stacktrace:

(gdb) where

Y ou can change the default debugger by supplying the name of the debugger as an argument to -debug
E.g. to run the server under ddd:

% ./t/ TEST -debug=ddd
META: list supported debuggers

If you debug mod_perl internals you can set the breakpoints using the -breakpoint option, which can be
repeated as many times as needed. When you set at least one breakpoint, the server will start running till it
meets the ap_run_pre_configoreakpoint. At this point we can set the breakpoint for the mod_perl code,
something we cannot do earlier if mod_perl was built as DSO. For example:

% ./t/TEST -debug - breakpoi nt =nodper| _cnd_sw tches \
- br eakpoi nt =nodper | _cnd_opti ons

will set the modperl_cmd_switched modperl_cmd_optiongreakpoints and run the debugger.
If you want to tell the debugger to jump to the start of the mod_perl code you may run:
% ./t/TEST -debug - breakpoi nt =nodper| _hook_i ni t

In fact -breakpoint automatically turns on the debug mode, so you can run:

% ./t/TEST - breakpoi nt =nodper| _hook_init

1.8.2 [Under Perl debugger|

When the Perl code misbehavesit’s the best to run it under the Perl debugger. Normally started as:

% per| -debug program pl

the flow control gets passed to the Perl debugger, which allows you to run the program in single steps and
examine its states and variables after every executed statement. Of course you can set up breakpoints and
watches to skip irrelevant code sections and watch after certain variables. The perldebugand the perldeb
tut manpages are covering the Perl debugger in fine details.

The Apache: : Test framework extends the Perl debugger and plugs in LWP’'s debug features, so you
can debug the requests. Let’ s take test apache/readrom mod_perl 2.0 and present the features as we go:

50 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.9 Using Apache::Test to Speed up Project Development

META: to be completed

run .t test under the perl debugger

%t/ TEST -debug per!| t/nodul es/access.t

run .t test under the perl debugger (nonstop mode, output to t/logs/perldb.out)

%t/ TEST -debug perl =nostop t/nodul es/ access.t

turn on -v and LWP trace (1 is the default) mode in Apache:: TestRequest

% t/ TEST -debug | wp t/nodul es/access.t

turn on -v and LWP trace mode (level 2) in Apache:: TestRequest

%t/ TEST -debug | wp=2 t/nodul es/access.t

183

To get Start the server under strace(1):

%t/ TEST -debug strace
The output goes to t/logs/strace.log.

Now in a second terminal run;

%t/ TEST -run-tests
Beware that t/logg/strace.log is going to be very big.

META: can we provide strace(1) optsif we want to see only certain syscals?

1.9 [Using Apache:: Test to Speed up Project Development

When developing a project, as the code is written or modified it is desirable to test it at the same time. If
you write tests as you code, or even before you code, Apache::Test can speed up the modify-test code
development cycle. The idea is to start the server once and then run the tests without restarting it, and
make the server reload the modified modules behind the scenes. This of course works only if you modify
plain perl modules. If you develop XS/C components, you have no choice but to restart the server before
you want to test the modified code.

First of al, your perl modules need to reside under the lib directory, the same way they reside in blib/lib.
In the section [Basic Testing Environment| we' ve already arranged for that. If Amazing.pm resides in the
top-level directory, it's not possible to perform’ r equi re Apache: : Amazi ng’ . Only after running
make, the file will be moved to blib/lib/Apache/Amazing.pm, which is when we can load it. But you don’t
want to run make every time you change the file. It's both annoying and error-prone, since at times you'd
do some change, try to verify it and it will appear to be wrong, and you will try to understand why,

6 Dec 2003 51

1.10 Writing Tests Methodology

whereas in reality you just forgot to run make and the server was testing against the old unmodified
versioninbl i b/ | i b. Of you course if you always run make test it'll aways do the right thing, but
it's not the most effecient way to undertake when you want to test a specific test and you do it every few
seconds.

The following scenario will make you a much happier Perl developer.

First, we need to instruct Apache::Test to modify @ NC, which we could do in t/conf/modper|_extra.pl or
t/conf/extra.conf.in, but the problem is that you may not want to keep that change in the released package.
There is a better way, if the environment variable APACHE_TEST LI VE_DEV is set to a true vaue,
Apache: : Test will automatically add the lib/ directory if it exists. Executing:

% APACHE_TEST LI VE_DEV=1 t/TEST -confi gure

will add code to add /path/to/Apache-Amazing/lib to @ NC in t/conf/modper|_inc.pl. This technique is
convenient since you don’t need to modify your code to include that directory.

Second, we need to configure mod_perl to use Apache: : Rel oad to automatically reload the module
when it’s changed, by adding following configuration directives to t/conf/extra.conf.in:;

Per | Modul e Apache: : Rel oad

Per || ni t Handl er Apache: : Rel oad

Per| Set Var Rel oadAll O f
Per| Set Var Rel oadMbdul es " Apache: : Amazi ng"

(For more information about Apache: : Rel oad, depending on the used mod_perl generation, refer to
the mod_perl 1.0 documentation or the Apache: : Rel oad manpage for mod_perl 2.0.)

Now we execute:

% APACHE_TEST LI VE_DEV=1 t/TEST -configure

which will generate t/conf/extra.conf and start the server:

%t/ TEST -start

from now on, we can modify Apache/Amazing.pm and repeatedly run:

%t/ TEST -run basic

without restarting the server.

1.10 Writing Tests M ethodology

META: to be completed

52 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework 1.11 Other Webserver Regression Testing Frameworks

1.10.1 When Tests Should Be Written|

o A New featureis Added

Every time anew feature is added new tests should be added to cover the new feature.
® A BugisReported

Every time a bug gets reported, before you even attempt to fix the bug, write a test that exposes the
bug. Thiswill make much easier for you to test whether your fix actually fixes the bug.

Now fix the bug and make sure that test passes ok.

It's possible that a few tests can be written to expose the same bug. Write them all -- the more tests
you have the less chances are that there is a bug in your code.

If the person reporting the bug is a programmer you may try to ask her to write the test for you. But
usually if the report includes a simple code that reproduces the bug, it should probably be easy to
convert this code into a test.

1.11 [Other Webserver Regression Testing Framewor ks

o Puffin

Puffin is a web application regression testing system. It allows you to test any web application from
end to end based application asif it were a"black box" accepting inputs and returning outputs.

It's available from|http://puffin.sourceforge.net/|

1.12 |Referenceg

® extreme programming methodology

Extreme Programming: A Gentle Introduction: fhttp://www.extremeprogramming.org/}

Extreme Programming: fhttp://www.xprogramming.com/}

See also other sites linked from these URLs.

1.13 Maintainerg

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman <stas (at) stason.org>

6 Dec 2003 53

http://puffin.sourceforge.net/
http://www.extremeprogramming.org/
http://www.xprogramming.com/

1.14 Authors

1.14 |Authorsg

® Stas Bekman <stas (at) stason.org>

Only the mgjor authors are listed above. For contributors see the Changesfile.

54 6 Dec 2003

Running and Developing Tests with the Apache:: Test Framework

Table of Contents:

1 |Runni nq and Developing Tests with the Apache:: Test Framework |

1.1 [Description
12 IBasrcs of Perl ModulesTesnnd
1.3 [Prerequisited .
14 -
1.4.1 |Testing Optiong .
142
1.4.3 |Individual Testing
1.4.4 |Repetitive Testing
145 :
1.4.6 [Verbose Mode

147 |Co|ored Trace M odel .
148 IControllrnq the Apache::Test's Srqnal to Norse Ratrol

1.4.9 [StressTesting .
149.1 he Proble
1.4.9.2 [The Solution

1.4.9.3 [Resolving Sequence Probl ems|
1.4.9.4 [Apache: : Test Snoke Solution|
1.4.10 |[RunTime Configuration Overriding
1.4.11 |Request Generation and Response Optiong
1.4.12 .
1.5 |Setting Up Testing Environment]| .
1.5.1 |Basic Testing Environment]
1.5.2 |Extending Configuration Setup|
1.5.3 |Special Configuration Fileq .
1.5.4 |Inheriting from System-wide httpd. confl
1.6 |Apache:: Test Framework’ s Architecturg
1.6.1 |Developing Response-only Part of a Test] .
1.6.2 |Developing Response and Request Parts of a Tes|
1.6.3 |Developing Test Response Handlersin G
1.6.4 |Request and Response M ethodd
1.6.5 |Other Request Generation helperq .
1.6.6 |[Starting Multiple Serverd.
1.6.7 [Multiple User Agentd .
1.6. 8 |H|tt| ng the Same | nterpreter (Server Thread/Process Instance)l
1.7 [Writing Tesid -
17.1 |Def|n|nq How Many Sub- Tests Are to Be Ruri
1.7.2 |Skipping a Whole Test]
1.7.3 |Skipping Numerous Testq
1.7.4 |Reporting a Success or a Failure of Sub testsl
1.7.5 |Skipping Sub-testy
1.7.6 |Running only Selected Sub- testsi

1.7.7 [Todo Sub-testy .

1.7.8 [Making it Easy to Debug.

6 Dec 2003

Table of Contents:

Qoo ~N~N~NOCOODOUGTOADRMDMWWNDNEE

WWWWWWWWWWNNNNNNNMNMNNYRFREREPRRRERPRE
ggom\rmmr\)r\)oooommwpHooro.hoooop

Table of Contents:

1.7.9 [Tie-ing STDOUT to a Response Handler Object|
1.7.10 el@er Function§ . e
1.7.11 [Auto Configuration . .
1.7.11.1 | orcing Configuration Sectlons |nto the Tog Level|
1.7.11.2 |Bypassing Auto-Configuration .
1.7.11.3 [Virtual HoslS :
1.7.11.4 |Runn|ng PreConﬂguranon Codg
1.7.11.5 [Controlling the Configuration Ordef :
1.7.12 |Ihreaded versus Non- threaded PerI Test's Compatl bil |ty|
1.7.13 [Retrieving the Server Configuration Data
1.7.13.1 |ModuIeMag|c NumberI .
18 |Debu§§| n§ Tes@ ..
1.8.1 [Under C debu§§§1 .
1.8.2 [Under Perl debuﬁﬁ@
183| |n§.
1.9 |US| nﬁ Aﬁame: :Test to @eed u§ Proi ect Devel o@menﬂ
110 e
1101

1.11 [Other Webserver Regression Testing Frameworky .
1.12 [References

1.13 [Maintainerg
1.14 [Authorg

GEES

45
46
46
47

49
49
49
49
50
51
51
52
53
53
53
53

6 Dec 2003

	1€€Running and Developing Tests with the Apache::Test Framework
	1.1€€Description
	1.2€€Basics of Perl Modules Testing
	1.3€€Prerequisites
	1.4€€Running Tests
	1.4.1€€Testing Options
	1.4.2€€Basic Testing
	1.4.3€€Individual Testing
	1.4.4€€Repetitive Testing
	1.4.5€€Parallel Testing
	1.4.6€€Verbose Mode
	1.4.7€€Colored Trace Mode
	1.4.8€€Controlling the Apache::Test's Signal to Noise Ratio
	1.4.9€€Stress Testing
	1.4.9.1€€The Problem
	1.4.9.2€€The Solution
	1.4.9.3€€Resolving Sequence Problems
	1.4.9.4€€Apache::TestSmoke Solution

	1.4.10€€RunTime Configuration Overriding
	1.4.11€€Request Generation and Response Options
	1.4.12€€Batch Mode

	1.5€€Setting Up Testing Environment
	1.5.1€€Basic Testing Environment
	1.5.2€€Extending Configuration Setup
	1.5.3€€Special Configuration Files
	1.5.4€€Inheriting from System-wide httpd.conf

	1.6€€Apache::Test Framework's Architecture
	1.6.1€€Developing Response-only Part of a Test
	1.6.2€€Developing Response and Request Parts of a Test
	1.6.3€€Developing Test Response Handlers in C
	1.6.4€€Request and Response Methods
	1.6.5€€Other Request Generation helpers
	1.6.6€€Starting Multiple Servers
	1.6.7€€Multiple User Agents
	1.6.8€€Hitting the Same Interpreter †Server Thread/Process Instance‡

	1.7€€Writing Tests
	1.7.1€€Defining How Many Sub-Tests Are to Be Run
	1.7.2€€Skipping a Whole Test
	1.7.3€€Skipping Numerous Tests
	1.7.4€€Reporting a Success or a Failure of Sub-tests
	1.7.5€€Skipping Sub-tests
	1.7.6€€Running only Selected Sub-tests
	1.7.7€€Todo Sub-tests
	1.7.8€€Making it Easy to Debug
	1.7.9€€Tie-ing STDOUT to a Response Handler Object
	1.7.10€€Helper Functions
	1.7.11€€Auto Configuration
	1.7.11.1€€Forcing Configuration Sections into the Top Level
	1.7.11.2€€Bypassing Auto-Configuration
	1.7.11.3€€Virtual Hosts
	1.7.11.4€€Running Pre-Configuration Code
	1.7.11.5€€Controlling the Configuration Order

	1.7.12€€Threaded versus Non-threaded Perl Test's Compatibility
	1.7.13€€Retrieving the Server Configuration Data
	1.7.13.1€€Module Magic Number

	1.8€€Debugging Tests
	1.8.1€€Under C debugger
	1.8.2€€Under Perl debugger
	1.8.3€€Tracing

	1.9€€Using Apache::Test to Speed up Project Development
	1.10€€Writing Tests Methodology
	1.10.1€€When Tests Should Be Written

	1.11€€Other Webserver Regression Testing Frameworks
	1.12€€References
	1.13€€Maintainers
	1.14€€Authors

